imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Serial EEPROM Series Automotive EEPROM 125°C Operation SPI BUS EEPROM

BR25H640-2AC

General Description

BR25H640-2AC is a 64Kbit Serial EEPROM of SPI BUS interface method.

Features

- SPI BUS interface (CPOL, CPHA)=(0,0), (1,1)
- Voltage Range : 2.5V to 5.5V
- Operating Range : -40°C to +125°C
- Clock Frequency : 10MHz(Max)
- Write Time : 4ms(Max)
- Page Size : 32bytes
- Bit Format : 8192 x 8bit
- 32bytes Write Lockable Identification Page (ID Page)
- Address Auto Increment Function at Read Operation
- Auto Erase and Auto End Function at Data Rewrite
- Write Protect Block Setting by Software Memory Array 1/4, 1/2, Whole
- HOLD Function by HOLDB Pin
- Low Supply Current Write Operation (5V) : 1.0mA (Typ) Read Operation (5V) : 1.2mA (Typ) Standby State(5V) : 0.1µA (Typ)
- Prevention of Write Mistake Write prohibition at Power On Write prohibition by WPB Pin Write prohibition Block Setting Prevention of Write Mistake at Low Voltage
- Write Cycles : 1,000,000 Write Cycles (Ta≤85°C) 500,000 Write Cycles (Ta≤105°C)
- 300,000 Write Cycles (Ta≤125°C) Data Retention : 100 Years (Ta≤25°C)
 - : 60 Years (Ta≤105°C) 50 Years (Ta≤125°C)
- Data at Shipment Memory Array : FFh ID Page First 3 Addresses : 2Fh, 00h, 0Dh Other Addresses : FFh Status Register WPEN, BP1, BP0 : 0, 0, 0 Lock Status LS : 0
- MSOP8, TSSOP-B8, SOP8, SOP-J8 Packages
- AEC-Q100 Qualified

- MSOP8 TSSOP-B8 2.90mm x 4.00mm x 0.90mm 3.00mm x 6.40mm x 1.20mm
 - SOP8 SOP-J8 5.00mm x 6.20mm x 1.71mm 4.90mm x 6.00mm x 1.65mm

Packages W(Typ) x D(Typ) x H(Max)

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Supply Voltage	Vcc	-0.3 to +6.5	V
		0.38 (MSOP8) (Note1)	
Dawar Disaination	Pd	0.41 (TSSOP-B8) (Note2)	10/
Power Dissipation	Pa	0.56 (SOP8) ^(Note3)	W
		0.56 (SOP-J8) (Note4)	
Storage Temperature Range	Tstg	-65 to +150	°C
Operating Temperature Range	Topr	-40 to +125	°C
Terminal Voltage	_	-0.3 to +6.5	V
Maximum Junction Temperature	Tjmax	150	°C
Electrostatic Discharge Voltage (Human Body Model)	V _{ESD}	-6000 to +6000	V

(Note1) Derate by 3.1mW/°C when operating above Ta=25°C

(Note2) Derate by 3.3mW/°C when operating above Ta=25°C.

(Note3) Derate by 4.5mW/°C when operating above Ta=25°C.

(Note4) Derate by 4.5mW/°C when operating above Ta=25°C.

Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Memory Cell Characteristics (Vcc=2.5V to 5.5V)

Parameter		Limit	Unit	Condition		
Faranietei	Min	Тур	Max	Unit	Condition	
	1,000,000	_	_	Cycles	Ta≤85°C	
Write Cycles (Note5, 6)	500,000	_	_	Cycles	Ta≤105°C	
	300,000	_	_	Cycles	Ta≤125°C	
	100	_	_	Years	Ta≤25°C	
Data Retention (Note5)	60	_	_	Years	Ta≤105°C	
	50	_	_	Years	Ta≤125°C	

(Note5) Not 100% TESTED

(Note6) The Write Cycles is defined for unit of 4 data bytes with the same address bits of A12 to A2.

Recommended Operating Ratings

Parameter	Symbol	Ra	Unit	
Falameter	Symbol	Min	Max	Offic
Supply Voltage	Vcc	2.5	5.5	V
Input Voltage	Vin	0	Vcc	V
Bypass Capacitor	С	0.1	_	μF

Input / Output Capacitance (Ta=25°C, Frequency=5MHz)

Parameter	Symbol	Conditions	Min	Max	Unit
Input Capacitance (Note7)	CIN	V _{IN} =GND	_	8	pF
Output Capacitance (Note7)	Соит	V _{OUT} =GND	—	8	pF

(Note7) Not 100% TESTED

DC Characteristics (Unless otherwise specified, Ta=-40°C to +125°C, Vcc=2.5V to 5.5V)

Parameter	Symbol	Limit		Unit	Conditions	
Parameter	Symbol	Min	Тур	Max	Unit	Conditions
Input High Voltage	VIH	0.7 Vcc	_	Vcc+0.3	V	2.5V≤Vcc≤5.5V
Input Low Voltage	VIL	-0.3	_	0.3 Vcc	V	2.5V≤Vcc≤5.5V
Output Low Voltage	Vol	0	_	0.4	V	I _{OL} =2.1mA
Output High Voltage	Vон	0.8 Vcc	_	Vcc	V	I _{0H} =-2.0mA
Input Leakage Current	ILI	-2	_	+2	μA	V _{IN} =0V to Vcc
Output Leakage Current	I _{LO}	-2	_	+2	μA	V _{OUT} =0V to Vcc, CSB=Vcc
Supply Current	Icc1	-	_	2.5	mA	Vcc=2.5V, f_{SCK} =5MHz, t_{EW} =4ms V _{IH} /V _{IL} =0.9Vcc/0.1Vcc, SO=OPEN
(WRITE)	Icc2	_	_	5.5	mA	Vcc=5.5V, f _{SCK} =5 or 10 MHz, t _{E/W} =4ms V _{IH} /V _{IL} =0.9Vcc/0.1Vcc, SO=OPEN
	Іссз	_	_	1.5	mA	Vcc=2.5V, f _{SCK} =5MHz V _{IH} /V _{IL} =0.9Vcc/0.1Vcc, SO=OPEN
Supply Current (READ)	Icc4	_	_	2.0	mA	Vcc=5.5V, f _{SCK} =5MHz V _{IH} /V _{IL} =0.9Vcc/0.1Vcc, SO=OPEN
	I _{CC5}	_	_	4.0	mA	Vcc=5.5V, f _{SCK} =10MHz V _{IH} /V _{IL} =0.9Vcc/0.1Vcc, SO=OPEN
Standby Current	I _{SB}	_	_	10	μA	Vcc=5.5V CSB=HOLDB=WPB=Vcc, SCK=SI=Vcc or 0V, SO=OPEN

AC Characteristics (Ta=-40°C to +125°C, unless otherwise specified, load capacitance CL1=100pF)

Devemeter	Cymahal	2.5V≤Vcc≤5.5V		4.5V≤Vcc≤5.5V			11-34	
Parameter	Symbol	Min	Тур	Max	Min	Тур	Max	Unit
SCK Frequency	f _{SCK}	0.01	_	5	0.01	_	10	MHz
SCK High Time	t _{scкwн}	85	_	—	40	—	_	ns
SCK Low Time	t _{SCKWL}	85	_	—	40	—	_	ns
CSB High Time	t _{cs}	85	_	_	40	_	_	ns
CSB Setup Time	t _{css}	90	_	_	30	_	_	ns
CSB Hold Time	t _{csн}	85	_	_	30	_	_	ns
SCK Setup Time	t _{SCKS}	90	_	_	30	_	_	ns
SCK Hold Time	tscкн	90	_	_	30	_	_	ns
SI Setup Time	t _{DIS}	20	_	_	10	_	_	ns
SI Hold Time	tын	30	_	_	10	_	_	ns
Data Output Delay Time1	t _{PD1}	-	_	60	_	_	40	ns
Data Output Delay Time2 (C _{L2} =30pF)	t _{PD2}	_	-	50	—	—	30	ns
Output Hold Time	t _{он}	0	—	—	0	—	_	ns
Output Disable Time	toz	-	-	100	_	_	40	ns
HOLDB Setting Setup Time	t _{HFS}	0	_	_	0	_	_	ns
HOLDB Setting Hold Time	t _{HFH}	40	_	_	30	_	_	ns
HOLDB Release Setup Time	t _{HRS}	0	_	_	0	_	—	ns
HOLDB Release Hold Time	tнкн	70	-	_	30	_	_	ns
Time from HOLDB to Output High-Z	tноz	-	_	100	_	_	40	ns
Time from HOLDB to Output Change	thpd	-	-	60	_	_	40	ns
SCK Rise Time (Note1)	trc	-	_	2	_	_	2	μs
SCK Fall Time (Note1)	t _{FC}	-	_	2	_	_	2	μs
Output Rise Time (Note1)	t _{RO}	-	-	40	_	_	20	ns
Output Fall Time (Note1)	t _{FO}	-	_	40	-	-	20	ns
Write Time	t _{E/W}	-	_	4	—	—	4	ms

(Note1) NOT 100% TESTED

AC Measurement Conditions

Parameter	Symbol		Unit		
Farameter	Symbol	Min	Тур	Max	Unit
Load Capacitance1	C _{L1}	—	—	100	pF
Load Capacitance2	C_{L2}	—	—	30	pF
Input Rise Time	_	—	—	50	ns
Input Fall Time	_	—	—	50	ns
Input Voltage	_	0.2	Vcc / 0.8 V	Vcc	V
Input / Output Judgment Voltage	—	0.3	Vcc / 0.7 V	Vcc	V

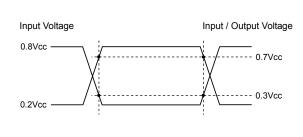
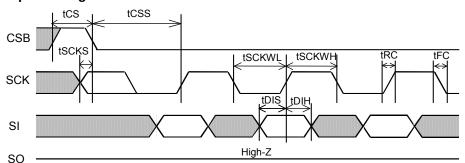
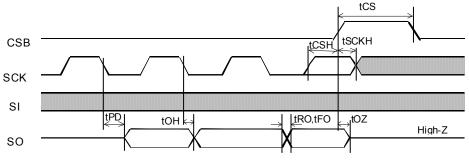
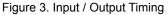
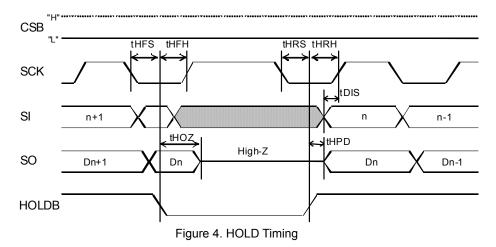


Figure 1. Input / Output Judgment Voltage

Serial Input / Output Timing


Figure 2. Input Timing

SI is taken into IC inside in sync with data rise edge of SCK. Input address and data from the Most Significant Bit MSB.

SO is output in sync with data fall edge of SCK. Data is output from the Most Significant Bit MSB.

Block Diagram

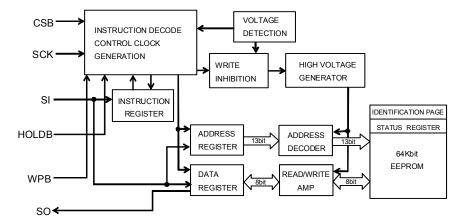
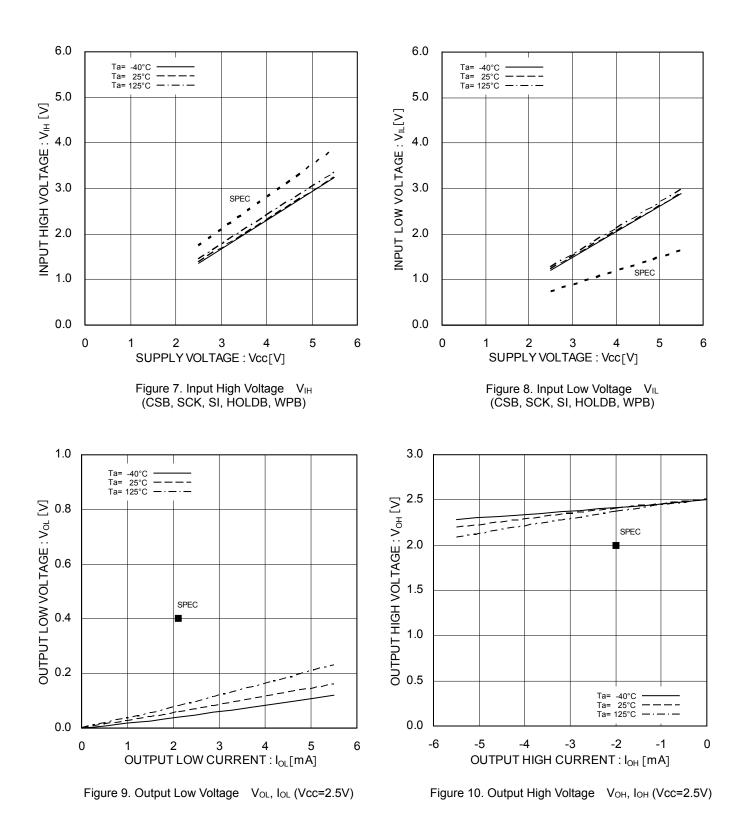
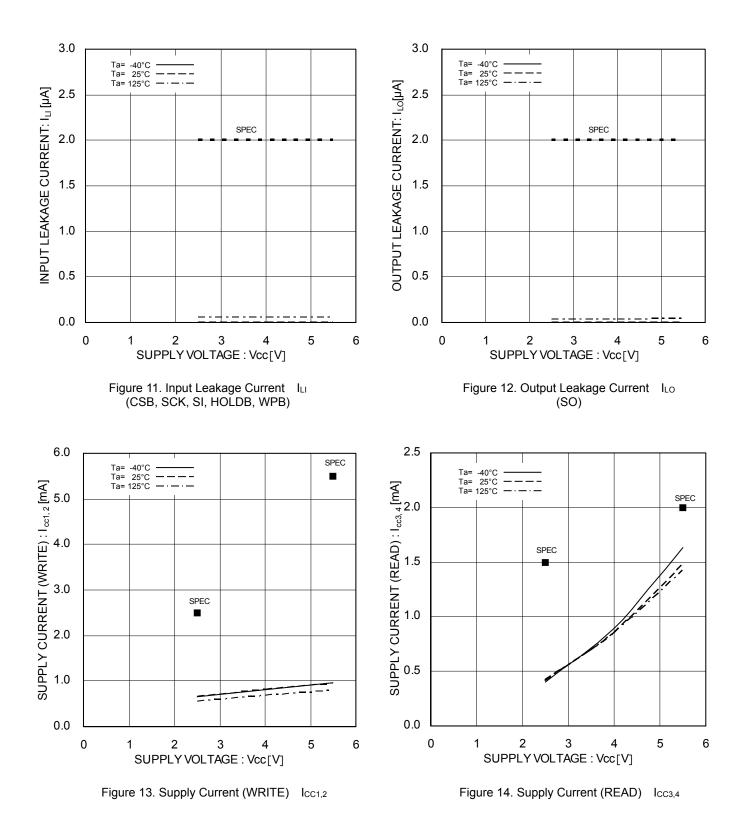
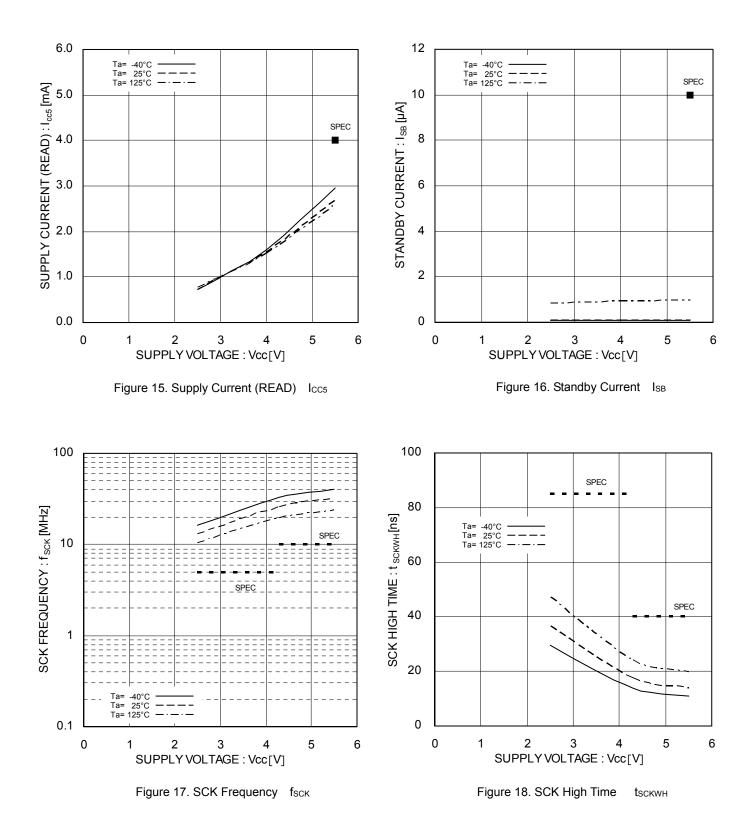


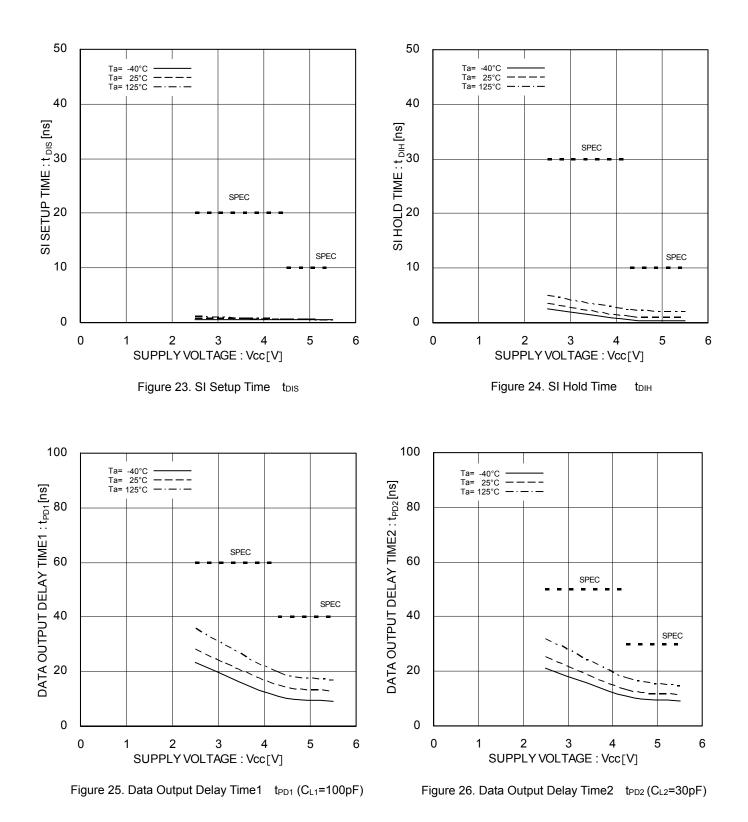
Figure 5. Block Diagram

Pin Configuration


Figure 6. Pin Assignment Diagram


Pin Description


Pin Number	Pin Name	Input / Output	Function
1	CSB	Input	Chip Select Input
2	SO	Output	Serial Data Output
3	WPB	Input	Write Protect Input Write Status Register Command is prohibited.
4	GND	_	All Input / Output Reference Voltage, 0V
5	SI	Input	Serial Data Input Start Bit, Instruction Code, Address and Data Input
6	SCK	Input	Serial Clock Input
7	HOLDB	Input	Hold Input Serial Communications may be suspended temporarily (HOLD State).
8	Vcc	_	Supply Voltage

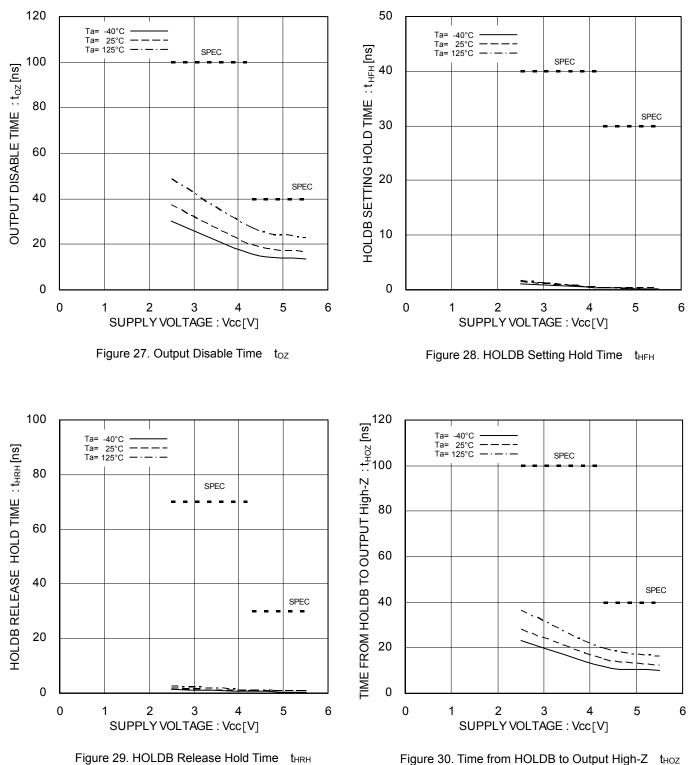
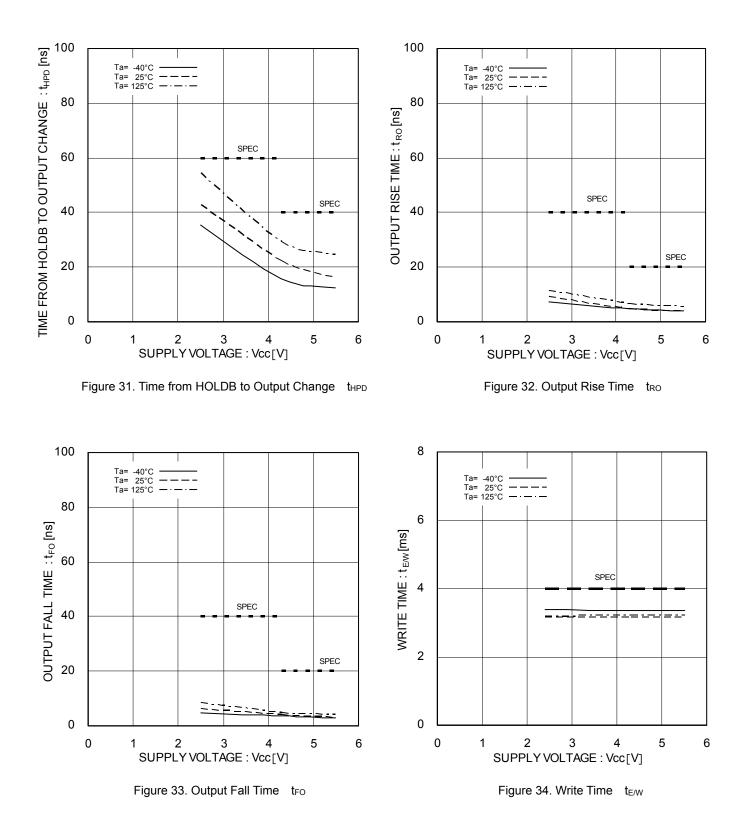



Figure 30. Time from HOLDB to Output High-Z tHOZ

1. Features

(1) Status Register

This IC has the Status Registers. Status Registers are of 8 bits and express the following parameters. WPEN, BP0 and BP1 can be set by Write Status Register command. These 3 bits are memorized into the EEPROM,

therefore are valid even when supply voltage is turned off.

Write Cycles and Data Retention of Status Registers are same as characteristics of the EEPROM.

WEN can be set by Write Enable command and Write Disable command. WEN becomes write disable status when supply voltage is turned off. \overline{R}/B is for write confirmation, therefore cannot be set externally. The values of Status Register can be read by Read Status Register command.

Table 1. Status Register

D7	D6	D5	D4	D3	D2	D1	D0	
WPEN	0	0	0	BP1	BP0	WEN	R/B	

Table 2. Function of Status Register

bit	Memory Location	Function	Content
WPEN	EEPROM	Pin Enable / Disable designation bit for WPB pin WPEN=0=Invalid, WPEN=1=Valid	WPEN bit enables / disables the function of WPB pin.
BP1 BP0	EEPROM	EEPROM Write Disable Block designation bit	BP1 and BP0 bits designate the Write Disable Block of EEPROM. Refer Table 3. Write Disable Block Setting.
WEN	Register	Write Enable/Write Disable Confirmation bit for WRITE, WRSR, WRID and LID WEN=0=Prohibited, WEN=1=Permitted	WEN bit indicates the status of write enable or write disable for WRITE, WRSR, WRID, LID.
Т./В	Register	Write Cycle Status(READY/BUSY) Confirmation bit R/B=0=READY, R/B=1=BUSY	\overline{R} /B bit indicates the status of READY or BUSY of the write cycle.

Table 3. Write Disable Block Setting

Status	Register	Protected Block	Protected Addresses		
BP1	BP0	FIOLECLEU BIOCK	FIOLECIEU AUDIESSES		
0	0	None	None		
0	1	Upper 1/4	1800h to 1FFFh		
1	0	Upper 1/2	1000h to 1FFFh		
1	1	Whole Memory	0000h to 1FFFh, ID Page		

(2) Write Protect Mode by WPB pin

By setting WPB = Low with WPEN = 1, Write Status Register command is disabled. Only when WPEN bit is set "1", the WPB pin functions become valid. However, when write cycle is in execution, no interruption can be made.

Table 4	. Write	Protect	Mode

WPEN bit	WDD nin	Instruction				
	WPB pin	WRSR	WRITE/WRID/LID			
0	Х	Writable	Writable			
1	1	Writable	Writable			
1	0	Write Protected	Writable			

WPB is normally fixed to High or Low for use, but when WPB is controlled so as to cancel Write Status Register command, pay attention to the following WPB Valid Timing.

Write Status Register command is executed, by setting WPB = Low in cancel valid area, command can be cancelled. The Data area (from 7th fall of SCK to 16th rise of SCK) becomes the cancel valid area. However, once write is started, any input cannot be cancelled. WPB input becomes Don't Care, and cancellation becomes invalid.

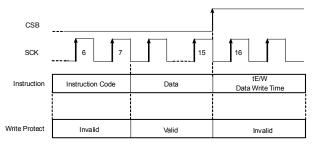


Figure 35. WPB Valid Timing (WRSR)

(3) Hold Mode by HOLDB pin

By the HOLDB pin, serial communication can be stopped temporarily (HOLD status). HOLDB pin carries out serial communications normally when it is High. To get in HOLD status, at serial communication, when SCK = Low, set the HOLDB pin Low. At HOLD status, SCK and SI become Don't Care, and SO becomes high impedance (High-Z). To release the HOLD status, set the HOLDB pin High when SCK = Low. After that, communication can be restarted from the point before the HOLD status. For example, when HOLD status is made after A5 address input at Read command, after release of HOLD status, by starting A4 address input, Read command can be restarted. When in HOLD status, leave CSB = Low. When it is set CSB = High in HOLD status, the IC is reset, therefore communication after that cannot be restarted.

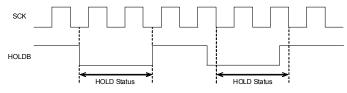


Figure 36. HOLD Status

(4) ID Page

This IC has 32 bytes Write lockable Identification Page (ID Page) in addition to Memory Array. The data in the first 3 addresses are for device identification. These data are over written by Write ID Page command.

Table 5. Data in the first 3 addresses

ID Page Address	Data	Content
00h	2Fh	Manufacturer Code (ROHM)
01h	00h	Interface Method (SPI)
02h	0Dh	Memory Density (64Kbit)

By setting Lock Status (LS) bit to "1" with Lock ID Page command, it is prohibited to write to ID page permanently. It is not reversible to set from ID Page Lock Status (LS="1") to ID Page Lock Release status (LS="0").

Table 6. Function of Lock Status

bit	Memory Location	Function	Content
LS	EEPROM	ID Page Lock/ Lock Release Status designation bit LS=0=ID Page Lock Release LS=1=ID Page Lock	LS bit can set Lock Status to ID Page.

(5) ECC Function

This IC has ECC bits for Error Correction to each 4 data bytes with the same address bits of A12 to A2. In the Read operation, even if there is 1 bit data error in the 4 bytes, IC corrects to correct data by ECC function and outputs data corrected. Even if write operation is started with only 1 byte data input, this IC rewrites the data of 4 bytes with the same address bits of A12 to A2 and the data of ECC bits added to these 4 bytes data. In order to maximize Write Cycles specified, it is recommended to write with data input of each 4 bytes with the same address bits of A12 to A2.

Table 7. Example of 4 data bytes with the same address	bits of A12 to A2 (Address 0000h,0001h,0002h,0003h)
--	---

Same Address Bits from A12 to A2									Non- Common		Address		
A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0	
0	0	0	0	0	0	0	0	0	0	0	0	0	0000h
0	0	0	0	0	0	0	0	0	0	0	0	1	0001h
0	0	0	0	0	0	0	0	0	0	0	1	0	0002h
0	0	0	0	0	0	0	0	0	0	0	1	1	0003h

2. Instruction Mode

After setting CSB pin from High to Low, to execute each command, input Instruction Code, Address and Data from the Most Significant Bit MSB.

Instruction	Content	Instruction Code (8bit)	Address(MSB) / Data (8bit)	Address (LSB) (8bit)	Data (8bit)
WREN	Write Enable	0000 0110	-	-	-
WRDI	Write Disable	0000 0100	-	-	-
READ	Read	0000 0011	A15 to A8 (Note1)	A7 to A0	D7 to D0 Output
WRITE	Write	0000 0010	A15 to A8 (Note1)	A7 to A0	D7 to D0 Input
RDSR	Read Status Register	0000 0101	D7 to D0 Output (Note2)	-	-
WRSR	Write Status Register	0000 0001	D7 to D0 Input (Note2)	-	-
RDID	Read ID Page	1000 0011	0000 0000	00A4 to A0	D7 to D0 Output
WRID	Write ID Page	1000 0010	0000 0000	00A4 to A0	D7 to D0 Input
RDLS	Read Lock Status	1000 0011	0000 0100	0000 0000	D7 to D0 Output (Note3)
LID	Lock ID page	1000 0010	0000 0100	0000 0000	D7 to D0 Input (Note3)

Table 8. Instruction Mode

(Note1) Address bit A15, A14, A13 = Don't Care

(Note2) Refer Figure 43. , Figure 44.. (Note3) Refer Figure 47. , Figure 48..

3. Timing Chart

(1) Write Enable Command (WREN)

It is set to write enable status by Write Enable command. As for this command, set CSB to Low, and then input the Instruction Code of Write Enable command. This command is accepted at the 7th rise of SCK. Even with input over 7 clocks, command becomes valid.

Before carrying out Write command, Write Status Register command, Write ID Page command and Lock ID Page command, it is necessary to set write enable status by the Write Enable command.

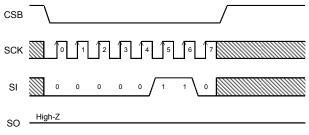




Figure 37. Write Enable Command

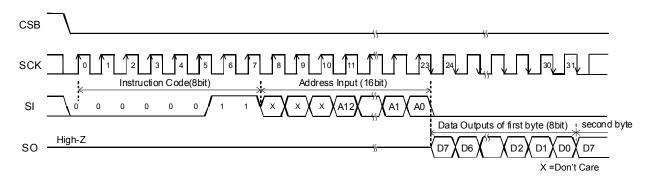
(2) Write Disable Command (WRDI)

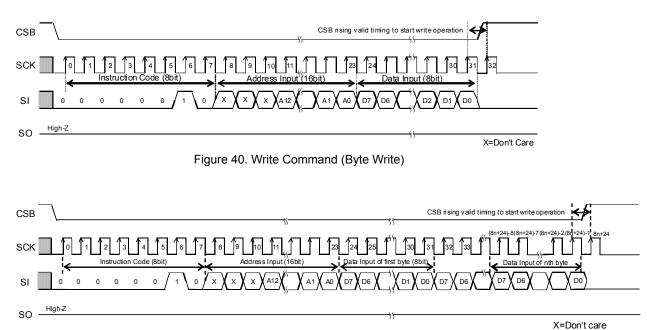
It is set to write disable status, WEN bit becomes to "0", by Write Disable command. As for this command, set CSB to Low, and then input the Instruction Code of Write Disable command. This command is accepted at the 7th rise of SCK. Even with input over 7 clocks, command becomes valid.

If Write command, Write Status Register command, Write ID Page command or Lock ID Page command is input in the write disable status, commands are cancelled. And even in the write enable status, once Write command, Write Status Register command, Write ID Page command or Lock ID Page is executed, it gets in the write disable status. After power on, this IC is in write disable status.

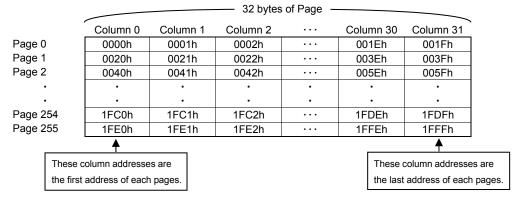
(3) Read Command (READ)

By Read command, data of EEPROM can be read. As for this command, set CSB to Low, then input address after Instruction Code of Read command. This IC starts data output of the designated address. Data output is started from SCK fall of 23 clock, and from D7 to D0 sequentially. This IC has increment read function. After output of data for 1 byte (8bits), by continuing input of SCK, data of the next address can be read. Increment read can read all the addresses of EEPROM Array. After reading data of the most significant address, by continuing increment read, data of the least significant address is read.




Figure 39. Read Command

(4) Write Command (WRITE)


By Write command, data of EEPROM can be written. As for this command, set CSB to Low, then input address and data after Instruction Code of Write command. Then, by making CSB to High, the IC starts write operation. The write time of EEPROM requires time of t_{EW} (Max 4ms). To start write operation, set CSB Low to High after taking the last data (D0), and before the next SCK clock starts. At other timing, Write command is not executed, and this Write command is cancelled.

During write operation, other than Read Status Register command is not accepted.

This IC has Page Write function, and after input of data for 1 byte (8bits), by continuing data input without setting CSB Low to High, data up to 32 bytes can be written for one $t_{E/W}$. In Page Write, the addressed lower 5 address bits are incremented internally at every time when data of 1 byte is inputted and data is written to respective addresses. When the data input exceeds the last address byte of the page, address rolls over to the first address byte of the same page. It is not recommended to input data over 32 bytes, it is recommended to input data in 32 bytes. In case of the data input over 32 bytes, it is explained in Table 10.

(a) Page Write Function

Figure 42. EEPROM physical address for Page Write command (32Byte)

In case of Page Write command with lower than 32 bytes data input

Table 9	Example of Page	Write with 2 by	/tes data input

No.	4 bytes group		Group 0					Group 7			
NO.	Addresses of Page 0	0000h	0001h	0002h	0003h	0004h		001Ch	001Dh	001Eh	001Fh
1	Previous Data	00h	01h	02h	03h	04h		1Ch	1Dh	1Eh	1Fh
2	Input data for Page Write (2 bytes)	AAh	55h	-	-	-	•••	-	-	-	-
3	The Data after Write operation	AAh	55h	02h	03h	04h		1Ch	1Dh	1Eh	1Fh

No.① : These data are EEPROM data before Write operation.

No.② : Inputted 2 bytes data AAh, 55h from address 0000h.

No.③ : If Write operation is executed with the data of No.②, the data are changed from the data of No.① to the data of No.③.

The data of address 0000h, 0001h are changed to data AAh, 55h, the data of address 0002h, 0003h, the 4 bytes group of Group 0, are over-written to data 02h, 03h.

When Write command is cancelled, EEPROM data keep No.(1).

• In case of Page Write command with more than 32 bytes data input

No.	4 bytes group		Gro	up 0			 Group 7			
	Addresses of Page 0	0000h	0001h	0002h	0003h	0004h	 001Ch	001Dh	001Eh	001Fh
1	Previous Data	00h	01h	02h	03h	04h	 1Ch	1Dh	1Eh	1Fh
۲	 Input data for Page Write (34 bytes) 	55h	AAh	55h	AAh	55h	 55h	AAh	55h	AAh
(2)		FFh	00h	-	-	-	 -	-	-	-
3	The Data after Write operation	FFh	00h	02h	03h	55h	 55h	AAh	55h	AAh

No.① : These data are EEPROM data before Write operation.

No.2 : Inputted 34 bytes data 55h, AAh, ..., 55h, AAh, FFh, 00h from address 0000h.

The data of address 0000h, 0001h are set to data 55h, AAh first. The data of address 0002h, 0003h are set to data 55h, AAh. After inputting data to Maximum byte (001Fh), the data address 0000h, 0001h are set to data FFh, 00h again. No data input to address 0002h, 0003h again.

No.③ : If Write operation is executed with the data of No.②, the data are changed from the data of No.① to the data of No.③.

The data of address 0000h, 0001h are changed to FFh, 00h inputted data later, not to 55h, AAh inputted data first. The data of address 0002h, 0003h, the 4 bytes group of Group 0, are over-written to 02h, 03h of Previous Data, not to 55h, AAh inputted data first. The data of other addresses are changed to 55h, AAh \cdots , 55h, AAh.

When Write command is cancelled, EEPROM data keep No.(1).

Roll Over

In Page Write command, when data is set to the last address of a page (e.g. address "001Fh" of page 0), the next data will be set to the first address of the same page (e.g. address "0000h" of page 0). This is why Page Write address increment is available in the same page.

(5) Read Status Register Command (RDSR)

By Read Status register command, data of status register can be read. As for this command, set CSB to Low, then input Instruction Code of Read Status Register command. This IC starts data output of the status register. Data output is started from SCK fall of 7 clock, and from D7 to D0 sequentially. This IC has increment read function. After output of data for 1 byte (8bits), by continuing input of SCK, this IC repeats to output data of the status register. Even if in write operation, Read Status Register command can be executed.

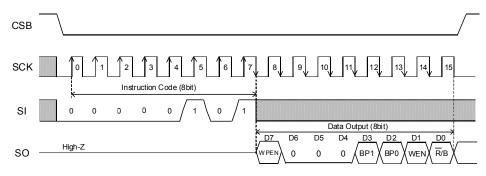


Figure 43. Read Status Register Command

(6) Write Status Register Command (WRSR)

Write Status Register command can write status register data. The data can be written by this command are 3 bits, that is, WPEN (D7), BP1 (D3) and BP0 (D2) among 8 bits of status register. As for this command, set CSB to Low, and input Instruction Code of Write Status Register command, and input data. Then, by making CSB to High, this IC starts write operation. Write Time requires time of t_{EW} as same as Write command. As for CSB rise, start CSB after taking the last data bit (D0), and before the next SCK clock starts. At other timing, command is cancelled. To the write disabled block, write cannot be made, and only read can be made.

During write operation, other than Read Status Register command is not accepted.

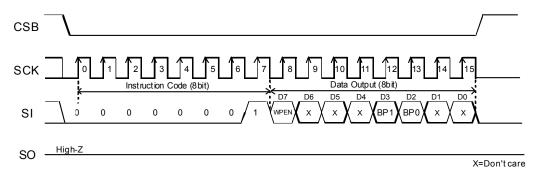


Figure 44. Write Status Register Command

(7) Read ID Page Command (RDID)

By Read ID Page command, data of ID Page can be read. As for this command, set CSB to Low, then input address after Instruction Code of Read ID Page command. Input address bit A10 as "0", other upper address bits A12 to A6 as "0". By inputting lower address bits A4 to A0, it is possible to address to 32 bytes ID Page. Data output is started from SCK fall of 23 clock, and from D7 to D0 sequentially. This IC has increment read function. After output of data for 1 byte (8bits), by continuing input of SCK, data of the next address can be read. After reading data of the most significant address of ID Page, by continuing increment read, data of the least significant address of ID Page is read.

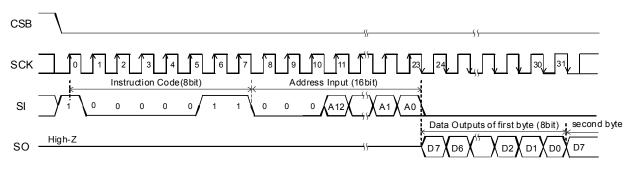
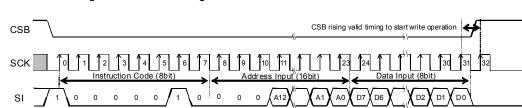



Figure 45. Read ID Page Command

(8) Write ID Page Command (WRID)

By Write ID Page command, data of ID Page can be written. As for this command, set CSB to Low, then input address and data after Instruction Code of Write ID Page command. Input address bit A10 as "0", other upper address bits A12 to A6 as "0". By inputting lower address bits A4 to A0, it is possible to address to 32 bytes ID Page. Then, by making CSB to High, the IC starts write operation. To start write operation, set CSB Low to High after taking the last data (D0), and before the next SCK clock starts. At other timing, Write ID Page command is not executed, and this Write ID Page command is cancelled. The write time of EEPROM requires time of t_{E/W} (Max 4ms). During write operation, other than Read Status Register command is not accepted. In case of Lock Status (LS) bit "1", Write ID Page command can't be executed. Write ID Page command has Page Write Function same as Write command.

SO High-Z

Figure 46. Write ID Page Command

(9) Read Lock Status Command (RDLS)

By Read Lock Status command, data of Lock Status can be read. As for this command, set CSB to Low, then input address after Instruction Code of Read Lock Status command. Input address bit A10 as "1", other address bits A12 to A0 as "0". Data output is started from SCK fall of 23 clock, and from D7 to D0 sequentially. The data D0 indicates Lock Status bit. The data D7 to D1 are Don't Care. This IC has increment read function. After output of data for 1 byte (8bits), by continuing input of SCK, this IC repeats to output data of the Lock Status byte. In case of Lock Status (LS) bit "1", ID Page is locked, Write ID Page command can't be executed. In case of LS bit "0", ID Page is released to lock, Write ID Page command can be executed.

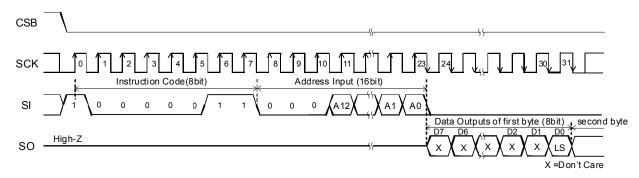


Figure 47. Read Lock Status Command

(10) Lock ID Page Command (LID)

By Lock ID Page command, data of Lock Status can be written. In case of Lock Status (LS) bit "1", Lock ID Page command can't be executed permanently. As for this command, set CSB to Low, then input address and data after Instruction Code of Lock ID Page command. Input address bit A10 as "1", other address bits A12 to A0 as "0". The data D1 is for LS bit, other data bits are Don't Care. Then, by making CSB to High, the IC starts write operation. To start write operation, set CSB Low to High after taking the last data (D0), and before the next SCK clock starts. At other timing, Lock ID Page command is not executed, and this Lock ID Page command is cancelled. The write time of EEPROM requires time of t_{EW} (Max 4ms).

During write operation, other than Read Status Register command is not accepted.

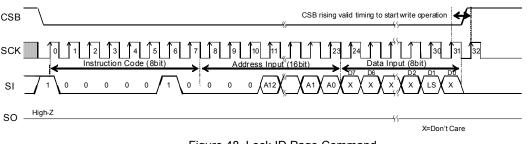


Figure 48. Lock ID Page Command

At Standby State

1. Standby Current

Set CSB = High, and be sure to set SCK, SI, WPB and HOLDB inputs = Low or High. Do not input intermediate electric potential.

2. Timing

As shown in Figure.49, at standby, when SCK is High, even if CSB is fallen, SI status is not read at fall edge. SI status is read at SCK rise edge after fall of CSB. At standby and at power ON/OFF, set CSB = High status.

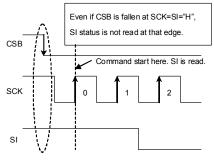


Figure 49. Operating Timing

Method to cancel each command

1. READ, RDID, RDLS

3. WRITE, WRID, LID

d : t_{F/W} Area

- Method to cancel : cancel by CSB = High
- 2. RDSR
- Method to cancel : cancel by CSB = High

a : Instruction Code, Address Input Area

b : Data Input Area (D7 to D1 input area) Cancellation is available by CSB = High.

When CSB is started, write starts.

cannot be made by any means.

c : Data Input Area (D0 area)

Cancellation is available by CSB = High.

Ins	truction Code	Address	Data	
	8bits	16bits	8bits	
ł	Cancel avail	able in all areas of	read modes	1

Figure 50. READ, RDID, RDLS Cancel Valid Timing

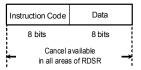
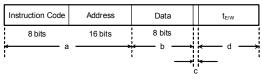



Figure 51. RDSR Cancel Valid Timing

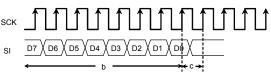


Figure 52. WRITE, WRID, LID Cancel Valid Timing

Note 1) If V_{CC} is made OFF during write execution, designated address data is not guaranteed, therefore write it once again.

Note 2) If CSB is started at the same timing as that of the SCK rise, write execution / cancel becomes unstable, therefore, it is recommended to fall in SCK = Low area. As for SCK rise, assure timing of t_{CSS} / t_{CSH} or higher.

4. WRSR

- a : From Instruction code to 15th rising of SCK Cancel by CSB = High.
- b : From 15th rising of SCK to 16th rising of SCK (write enable area) When CSB is started, write starts.

After CSB rise, cancellation cannot be made by any means.

And by inputting on SCK clock, cancellation cannot be made. In page write mode, there is write enable area at every 8 clocks

Cancellation is available by CSB = High. However, when write starts (CSB is started) in the area c, cancellation

c : After 16th rising of SCK
Cancel by CSB = High.
However, when write starts (CSB is started) in the area b, cancellation cannot be made by any means.
And, by inputting on SCK clock, cancellation cannot be made.

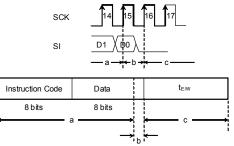


Figure 53. WRSR Cancel Valid Timing

Note 1) If V_{CC} is made OFF during write execution, designated address data is not guaranteed, therefore write it once again.

Note 2) If CSB is started at the same timing as that of the SCK rise, write execution / cancel becomes unstable, therefore, it is recommended to fall in SCK = Low area. As for SCK rise, assure timing of t_{CSS} / t_{CSH} or higher.

5. WREN/WRDI

- a : From instruction code to 7th rising of SCK Cancel by CSB = High.
- b : Cancellation is not available when CSB is started after 7th clock.

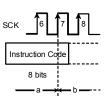
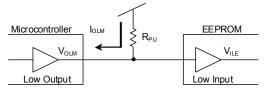


Figure 54. WREN/WRDI Cancel Valid Timing


High speed operation

In order to realize stable high speed operations, pay attention to the following input / output pin conditions.

1. Pull Up, Pull Down Resistance for Input Pins

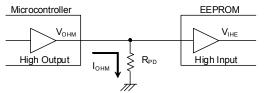
When to attach pull up, pull down resistance to EEPROM input pins, select an appropriate value for the microcontroller V_{OL} , I_{OL} from V_{IL} characteristics of this IC.

2. Pull Up Resistance

- VILE : VIL specifications of EEPROM
- V_{OLM} : V_{OL} specifications of Microcontroller
- IoLM : IoL specifications of Microcontroller

Figure 55. Pull Up Resistance

 $R_{PU} \ge \frac{V_{CC} - V_{OLM}}{I_{OLM}} \qquad \cdots \textcircled{1}$ $V_{OLM} \le V_{ILE} \qquad \cdots \textcircled{2}$


Example) When Vcc=5V, V_{ILE}=1.5V, V_{OLM}=0.4V, I_{OLM}=2mA, from the equation ①,

$$R_{PU} \ge \frac{5 - 0.4}{2 \times 10^{-3}}$$
$$\therefore R_{PU} \le 2.3 \quad \int k\Omega$$

With the value of R_{PU} to satisfy the above equation, V_{OLM} becomes 0.4V or lower, and with V_{ILE} (=1.5V), the equation 2 is also satisfied.

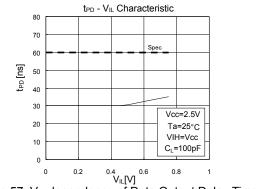
And, in order to prevent malfunction, mistake write at power ON/OFF, be sure to make CSB pull up.

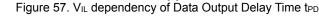
3. Pull Down Resistance

- VIHE : VIH specifications of EEPROM
- VOHM : VOH specifications of Microcontroller
- IOHM : IOH specifications of Microcontroller

Figure 56. Pull Down Resistance

$$R_{PD} \ge \frac{V_{OHM}}{I_{OHM}} \qquad \cdots (3)$$


$$V_{OHM} \ge V_{IHE} \qquad \cdots (4)$$


Example) When V_{CC}=5V, V_{OHM}=V_{CC}-0.5V, I_{OHM}=0.4mA, $V_{\text{IHE}}=V_{\text{CC}}\times0.7V$, from the equation (3),

$$R_{PD} \ge \frac{5 - 0.5}{0.4 \times 10^{-3}}$$

$$R_{PU} \ge 11.3 \quad [k\Omega]$$

Further, by amplitude V_{IHE} , V_{ILE} of signal input to EEPROM, operation speed changes. By inputting signal of amplitude of Vcc / GND level to input, more stable high speed operations can be realized. On the contrary, when amplitude of 0.8Vcc / 0.2Vcc is input, operation speed becomes slow.^(Note1)

In order to realize more stable high speed operation, it is recommended to make the values of R_{PU}, R_{PD} as large as possible, and make the amplitude of signal input to EEPROM close to the amplitude of Vcc / GND level. (Note1) At this moment, operating timing guaranteed value is guaranteed.

4. SO Load Capacitance Condition

Load capacitance of SO Pin affects upon delay characteristic of SO output. (Data Output Delay Time, Time from HOLDB to High-Z) In order to make output delay characteristic into higher speed, make SO load capacitance small. In concrete, "Do not connect many devices to SO bus", "Make the wire between the controller and EEPROM short", and so forth.

5. Other cautions

Make the wire length from the Microcontroller to EEPROM input signal same length, in order to prevent setup / hold violation to EEPROM, owing to difference of wire length of each input.