

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

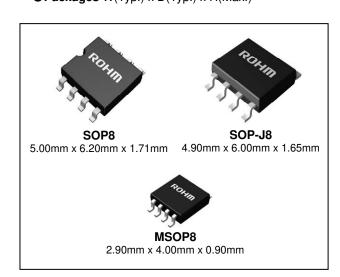
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Serial EEPROM Series Automotive EEPROM

125°C Operation Microwire BUS EEPROM(3-Wire)

BR93Hxx-WC (2K 4K 8K 16K)


General Description

BR93Hxx-WC is a serial EEPROM of serial 3-line interface method.

Features

- Conforming to Microwire BUS
- Withstands electrostatic voltage 8kV, (HBM method typ.,except BR93H66RFVM-WC)
- Wide temperature range -40°C to +125°C
- Same package line up and same pin configuration
- 2.7V to 5.5V single supply voltage operation
- Address auto increment function at read operation
- Write mistake prevention function
 - Write prohibition at power on
 - Write prohibition by command code
 - Write mistake prevention circuit at low voltage
- Program cycle auto delete and auto end function
- Program condition display by READY / BUSY
- Low current consumption
 - At write operation (at 5V)
 At read operation (at 5V)
 0.6mA (Typ.)
 0.6mA (Typ.)
 - At standby condition (at 5V) : 0.1μA(Typ.)(CMOS input)
- Built-in noise filter CS, SK, DI terminals
- High reliability by ROHM original Double-Cell structure
- Data retention for 20 years (Ta≤125°C)
- Endurance up to 300,000 times (Ta≦125°C)
- Data at shipment all address FFFFh
- AEC-Q100 Qualified

● Packages W(Typ.) x D(Typ.) x H(Max.)

●BR93Hxx-WC

Package type					SOP-J8	MSOP8
Capacity	Bit format	Туре	Power source voltage	RF	RFJ	RFVM
2Kbit	128×16	BR93H56-WC	2.7V to 5.5V	•	•	
4Kbit	256 × 16	BR93H66-WC	2.7V to 5.5V	•	•	•
8Kbit	512×16	BR93H76-WC	2.7V to 5.5V	•	•	
16Kbit	1K×16	BR93H86-WC	2.7V to 5.5V	•	•	

● Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Limits	Unit	Remarks
Impressed voltage	Vcc	-0.3 to +6.5	V	
		0.56 (SOP8)		When using at Ta=25°C or higher, 4.5mW, to be reduced per 1°C.
Permissible dissipation	Pd	0.56 (SOP-J8)	W	When using at Ta=25°C or higher, 4.5mW, to be reduced per 1°C.
		0.38 (MSOP8)		When using at Ta=25°C or higher, 3.1mW, to be reduced per 1°C.
Storage temperature range	Tstg	-65 to +150	°C	
Operating temperature range	Topr	-40 to +125	°C	
Terminal voltage	-	-0.3 to Vcc+0.3	V	

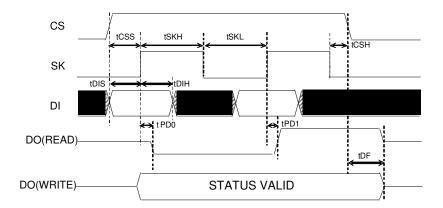
● Memory Cell Characteristics (Vcc=2.7V to 5.5V)

	/ V (0 0.0 V)					
Doromotor		Limit			Linnis	
Parameter	Min.	Тур.	Max.	Limit	Limit	
	1,000,000	-	-	Times	Ta≦85°C	
Endurance *1	500,000	-	-	Times	Ta≦105°C	
	300,000	-	-	Times	Ta≦125°C	
Data retention *1	40	-	-	Years	Ta≦25°C	
Data retention	20	-	-	Years	Ta≦125°C	

^{*1 :} Not 100% TESTED

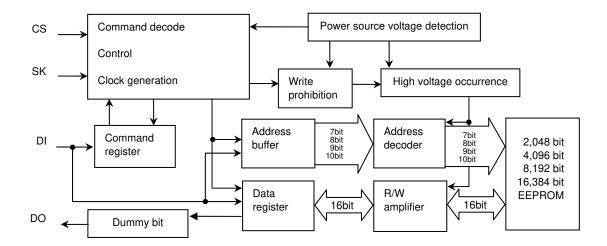
Recommended Operating Ratings

Parameter	Symbol	Limits	Unit
Power source voltage	Vcc	2.7 to 5.5	V
Input voltage	VIN	0 to Vcc	V

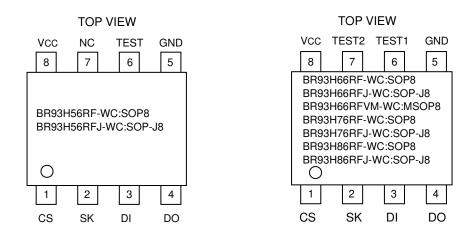

● Electrical Characteristics (Unless otherwise specified, Ta=-40°C to +125°C, Vcc=2.7V to 5.5V)

Doromotor	Cumbal		Limits		Unit	Conditions
Parameter	Parameter Symbol Min. Typ. Max. Unit		Unit	Conditions		
"L" input voltage	VIL	-0.3	-	0.3x Vcc	V	
"H" input voltage	VIH	0.7x Vcc	-	Vcc +0.3	V	
"L" output voltage 1	VOL1	0	-	0.4	V	IoL=2.1mA, 4.0V≦Vcc≦5.5V
"L" output voltage 2	VOL2	0	-	0.2	V	IoL=100µA
"H" output voltage 1	Voн1	2.4	-	Vcc	V	IOH=-0.4mA, 4.0V≦Vcc≦5.5V
"H" output voltage 2	VOH2	Vcc -0.2	-	Vcc	V	Іон=-100μΑ
Input leak current	ILI	-10	-	10	μA	VIN=0V to VCC
Output leak current	ILO	-10	-	10	μA	Vout=0V to Vcc, CS=0V
	ICC1	-	-	3.0	mA	fsk=1.25MHz, te/w=10ms (WRITE)
Current consumption	ICC2	-	-	1.5	mA	fsk=1.25MHz (READ)
	ICC3	-	-	4.5	mA	fsk=1.25MHz, te/w=10ms (WRAL)
Standby current	ISB	-	0.1	10	μA	CS=0V, DO=OPEN

● Operating Timing Characteristics (Unless otherwise specified, Ta=-40°C to +125°C, Vcc=2.7V to 5.5V)


Parameter	Symbol	Min.	Тур.	Max.	Unit
SK frequency	fsk	-	-	1.25	MHz
SK "H" time	tskh	250	-	-	ns
SK "L" time	tskl	250	-	-	ns
CS "L" time	tcs	200	-	-	ns
CS setup time	tcss	200	-	-	ns
DI setup time	tDIS	100	-	-	ns
CS hold time	tcsh	0	-	-	ns
DI hold time	tDIH	100	-	-	ns
Data "1" output delay time	tPD1	-	-	300	ns
Data "0" output delay time	tPD0	i	-	300	ns
Time from CS to output establishment	tsv	-	-	200	ns
Time from CS to High-Z	tDF	-	-	200	ns
Write cycle time	tE/W	-	7	10	ms
Write cycle time(BR93H66RFVM-WC)	tE/W	-	-	5	ms

●Sync data input / output timing



- OData is taken by DI sync with the rise of SK.
- OAt read operation, data is output from DO in sync with the rise of SK.
- OThe status signal at write (READY / BUSY) is output after tCS from the fall of CS after write command input, at the area DO where CS is "H", and valid until the next command start bit is input. And, white CS is "L", DO becomes High-Z.
- OAfter completion of each mode execution, set CS "L" once for internal circuit reset, and execute the following operation mode.

●Block Diagram

●Pin Configurations

●Pin Descriptions

Pin name	I/O	Function
Vcc	-	Power source
GND	-	All input / output reference voltage, 0V
CS	Input	Chip select input
SK	Input	Serial clock input
DI	Input	Start bit, ope code, address, and serial data input
DO	Output	Serial data output, READY / BUSY internal condition display output
NC	-	Non connected terminal, Vcc, GND or OPEN
TEST1	-	TEST terminal, GND or OPEN
TEST2	-	TEST terminal, Vcc, GND or OPEN
TEST	-	TEST terminal, GND or OPEN

● Typical Performance Curves

(The following characteristic data are Typ. values.)

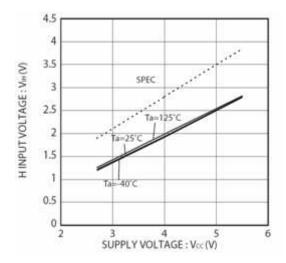


Figure 1. H input voltage VIH (CS, SK, DI)

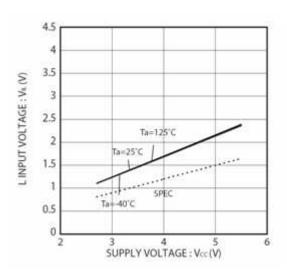


Figure 2. L input voltage VIL (CS, SK, DI)

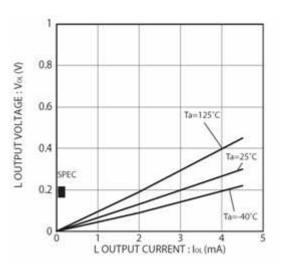


Figure 3. L output voltage VOL-IOL (VCC=2.7)

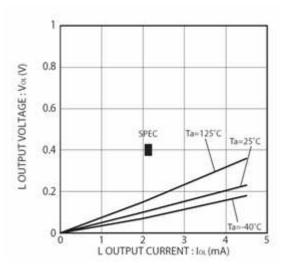


Figure 4. L output voltage VOL-IOL (VCC=4.0V)

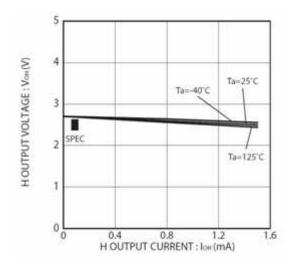


Figure 5. H output voltage VOH-IOH (VCC=2.7)

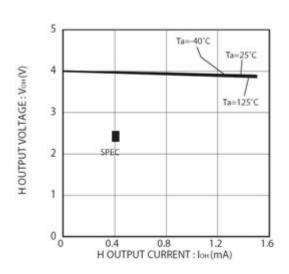


Figure 6. H output voltage VOH-IOH (VCC=4.0V)

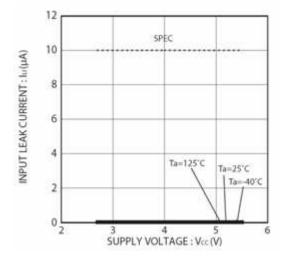


Figure 7. Input leak current ILI (CS, SK, DI)

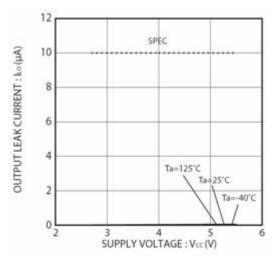


Figure 8. Output leak current ILO (DO)

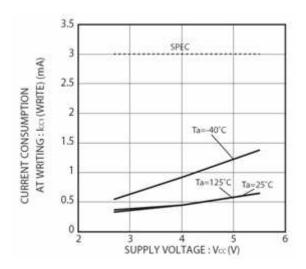


Figure 9. Current consumption at WRITE Operation ICC1 (WRITE, fSK=1.25MHz)

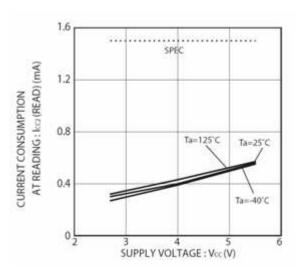


Figure 10. Consumption current at READ Operation ICC2 (READ, fSK=1.25MHz)

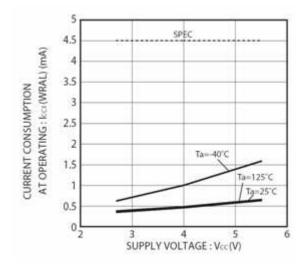


Figure 11. Consumption current at WRAL operation ICC3 (WRAL, fSK=1.25MHz)

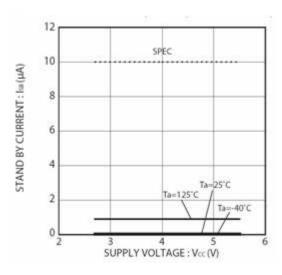


Figure 12. Consumption current at standby condition ISB

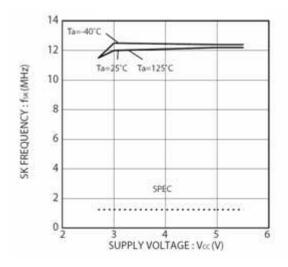


Figure 13. SK frequency fSK

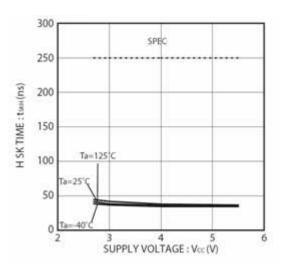


Figure 14. SK high time tSKH

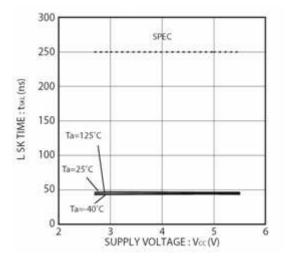


Figure 15. SK low time tSKL

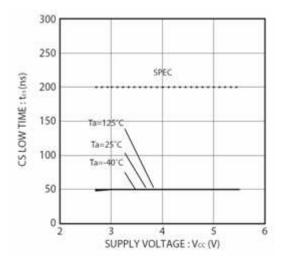


Figure 16. CS low time tCS

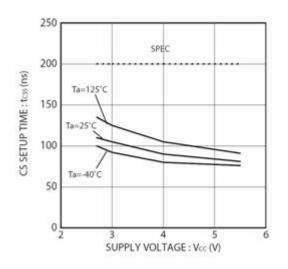


Figure 17. CS setup time tCSS

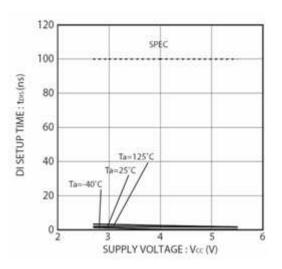


Figure 18. DI setup time tDIS

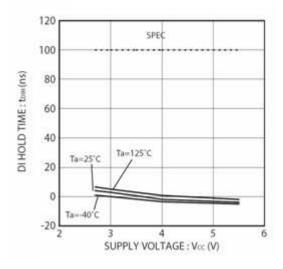


Figure 19. DI hold time tDIH

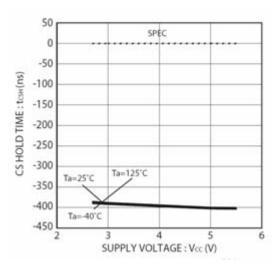


Figure 20. CS hold time tCSH

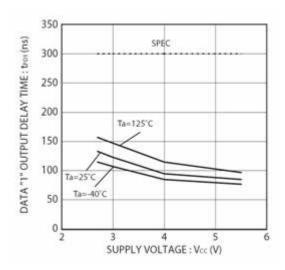


Figure 21. Data "1" output delay time tPD1

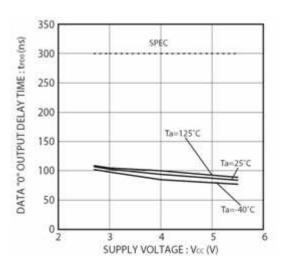


Figure 22. Data "0" output delay time tPD0

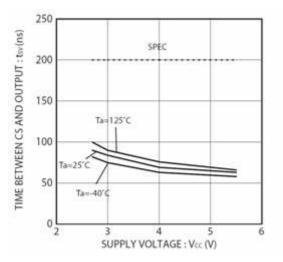


Figure 23. Time from CS to output establishment tSV

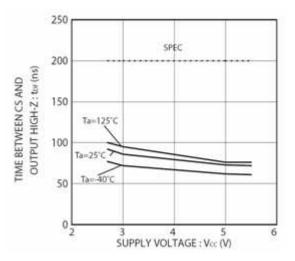


Figure 24. Time from CS to High-Z tDF

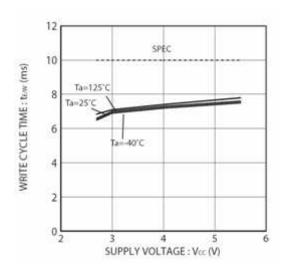
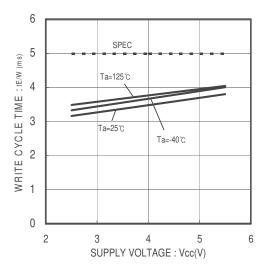
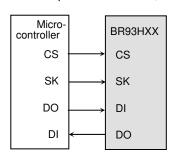
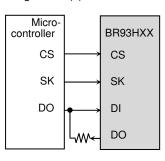


Figure 25. Write cycle time tE/W




Figure 26. Write cycle time tE/W (BR93H66RFVM-WC)


Description of Operations

Communications of the Microwire Bus are carried out by SK (serial clock), DI (serial data input), DO (serial data output), and CS (chip select) for device selection.

When to connect one EEPROM to a microcontroller, connect it as shown in Figure 27-(a) or Figure 27-(b). When to use the input and output common I/O port of the microcontroller, connect DI and DO via a resistor as shown in Figure 27-(b) (Refer to page 16.), and connection by 3 lines is available.

In the case of plural connections, refer to Figure 27-(c).

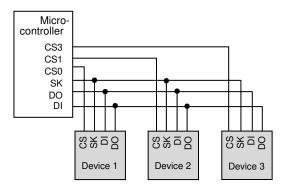


Figure 27-(a) Connection by 4 lines

Figure 27-(b) Connection by 3 lines

Figure 27-(c) Connection example of plural devices

Figure 27. Connection method with microcontroller

Communications of the Microwire Bus are started by the first "1" input after the rise of CS. This input is called a start bit. After input of the start bit, input ope code, address and data. Address and data are input all in MSB first manners. "0" input after the rise of CS to the start bit input is all ignored. Therefore, when there is limitation in the bit width of PIO of the microcontroller, input "0" before the start bit input, to control the bit width.

Command Mode

Command	Start	Ope	Address		Data
Command	bit	code	BR93H56/66-WC	BR93H76/86-WC	Dala
Read (READ)	1	10	A7,A6,A5,A4,A3,A2,A1,A0	A9,A8,A7,A6,A5,A4,A3,A2,A1,A0	D15 to D0(READ DATA)
Write enable (WEN)	1	00	1 1 * * * * * *	1 1 * * * * * * *	
Write (WRITE)	1	01	A7,A6,A5,A4,A3,A2,A1,A0	A9,A8,A7,A6,A5,A4,A3,A2,A1,A0	D15 to D0(WRITE DATA)
Write all (WRAL)	1	00	0 1 * * * * * B0	0 1 * * * * B2,B1,B0	D15 to D0(WRITE DATA)
Write disable (WDS)	1	00	0 0 * * * * * *	0 0 * * * * * * * *	

[•] Input the address and the data in MSB first manners.

Acceptance of all the commands of this IC starts at recognition of the start bit. The start bit means the first "1" input after the rise of CS.

A7 and B0 of BR93H56-WC becomes Don't Care. A9 and B2 of BR93H76-WC becomes Don't Care.

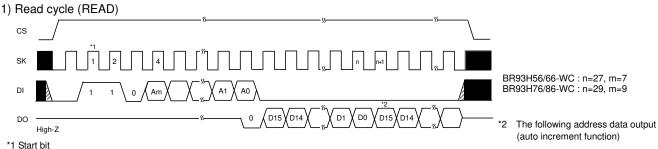
- *1 As for read, by continuous SK clock input after setting the read command, data output of the set address starts, and address data in significant order are sequentially output continuously. (Auto increment function)
- *2 When the read and the write all commands are executed, data written in the selected memory cell is automatically deleted, and input data is written.
- *3 For the write all command, data written in memory cell of the areas designated by B2, B1, and B0, are automatically deleted, and input data is written in bulk.

Write All Area

B2	B1	B0	Write area
0	0	0	000h to 07Fh
0	0	1	080h to 0FFh
0	1	0	100h to 17Fh
0	1	1	180h to 1FFh
1	0	0	200h to 27Fh
1	0	1	280h to 2FFh
1	1	0	300h to 37Fh
1	1	1	380h to 3FFh

Designation of B2, B1, and B0

H56	*	*	*
H66	*	*	В0
H76	*	B1	В0
H86	B2	B1	В0

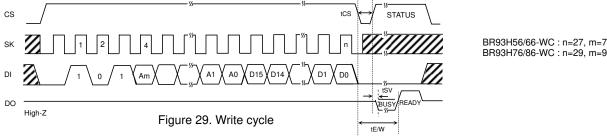

• The write all command is written in bulk in 2Kbit unit.

The write area can be selected up to 3bit. Confirm the settings and write areas of the above B2, B1, and B0.

As for *, input either VIH or VIL.

^{*}Start bit

Timing Chart

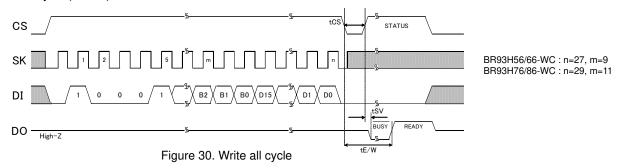


When data "1" is input for the first time after the rise of CS, this is recognized as a start bit. And when "1" is input after plural "0" are input, it is recognized as a start bit, and the following operation is started. This is common to all the commands to described hereafter.

Figure 28. Read cycle

OWhen the read command is recognized, input address data (16bit) is output to serial. And at that moment, at taking A0, in sync with the rise of SK, "0" (dummy bit) is output. And, the following data is output in sync with the rise of SK. This IC has address auto increment function valid only at read command. This is the function where after the above read execution, by continuously inputting SK clock, the above address data is read sequentially. And, during the auto increment, keep CS at "H".

2) Write cycle (WRITE)


OIn this command, input 16bit data (D15 to D0) are written to designated addresses (Am to A0). The actual write starts by the fall of CS of D0 taken SK clock(n-th clock from the start bit input), to the rise of the (n+1)-th clock.

When STATUS is not detected, (CS="L" fixed) Max. 10ms(Max.5ms:BR93H66RFVM-WC) in <u>confo</u>rmity with tE/W, and when STATUS is detected (CS="H"), all commands are not accepted for areas where "L" (BUSY) is output from D0, therefore, do not input any command.

Write is not made even if CS is started after input of clock after (n+1)-th clocks.

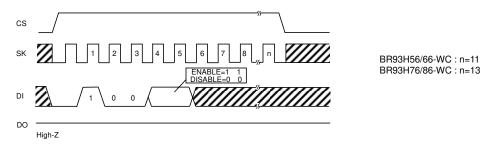
Note) Take tSKH or more from the rise of the n-th clock to the fall of CS.

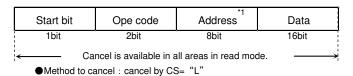
3) Write all cycle (WRAL)

OIn this command, input 16bit data is written simultaneously to designated block for 128 words. Data is writen in bulk at a write time of only Max. 10ms(Max.5ms:BR93H66RFVM-WC) in conformity with tE/W. When writing data to all addresses, designate each block by B2, B1, and B0, and execute write. Write time is Max.10ms(Max.5ms:BR93H66RFVM-WC). The actual write starts by the fall of CS from the rise of D0 taken at SK clock (n-th clock from the start bit input), to the rise of the (n+1)-th clock. When CS is ended after clock input after the rise of the (n+1)-th clock, command is cancelled, and write is not completed.

Note)Take tSKH or more from the rise of the n-th clock to the fall of CS.

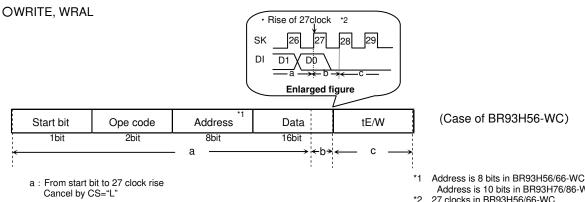
4) Write enable (WEN) / disable (WDS) cycle




Figure 31. Write enable (WEN) / disable (WDS) cycle

OAt power on, this IC is in write disable status by the internal RESET circuit. Before executing the write command, it is necessary to execute the write enable command. And, once this command is executed, it is valid unitl the write disable command is executed or the power is turned off. However, the read command is valid irrespective of write enable / disable command. Input to SK after 6 clocks of this command is available by either "H" or "L", but be sure to input it.

OWhen the write enable command is executed after power on, write enable status gets in. When the write disable command is executed then, the IC gets in write disable status as same as at power on, and then the write command is cancelled thereafter in software manner. However, the read command is executable. In write enable status, even when the write command is input by mistake, write is started. To prevent such a mistake, it is recommended to execute the write disable command after completion of write.


Application

1) Method to cancel each command **OREAD**

Address is 8 bits in BR93H56-WC, and BR93H66-WC. Address is 10 bits in BR93H76-WC, and BR93H86-WC.

Figure 32. READ cancel available timing

- b : 27 clock rise and after $^{\star 2}$ Cancellation is not available by any means. If Vcc is made OFF in this area, designated address data is not guaranteed, therefore write once again.
- c: 28 clock rise and after *3 Cancel by CS="L' However, when write is started in b area (CS is ended), cancellation is not available by any means. And when SK clock is input continuously, cancellation is not available.

Figure 33. WRITE, WRAL cancel available timing

- Address is 10 bits in BR93H76/86-WC
- 27 clocks in BR93H56/66-WC 29 clocks in BR93H76/86-WC
- 28 clocks in BR93H56/66-WC 30 clocks in BR93H76/86-WC
- Note 1) If Vcc is made OFF in this area, designated address data is not guaranteed, therefore write once again.
- Note 2) If CS is started at the same timing as that of the SK rise, write execution/cancel becomes unstable, therefore, it is recommended to fail in SK="L" area. As for SK rise, recommend timing of tCSS/tCSH or higher.

Equivalent circuit OOutput circuit

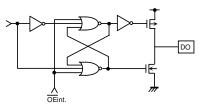


Figure 34. Output circuit (DO)

O Input circuit

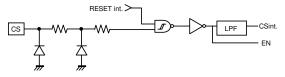


Figure 35. Input circuit (CS)

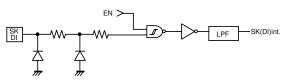


Figure 37. Input circuit (SK, DI)

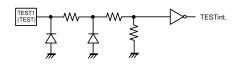


Figure 36. Input circuit (TEST1, TEST)

Figure 38. Input circuit (TEST2)

3) I/O peripheral circuit

3-1) Pull down CS.

By making CS="L" at power ON/OFF, mistake in operation and mistake write are prevented. Refer to the item 6) Notes at power ON/OFF in page 20.

OPull down resistance Rpd of CS pin

To prevent mistake in operation and mistake write at power ON/OFF, CS pull down resistance is necessary. Select an appropriate value to this resistance value from microcontroller VOH, IOH, and VIL characteristics of this IC.

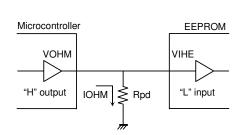


Figure 39. CS pull down resistance

$$\mathsf{Rpd} \; \geqq \; \frac{\mathsf{VOHM}}{\mathsf{IOHM}} \qquad \cdots \circlearrowleft$$

Example) When V_{CC} =5V, VIHE=2V, VOHM=2.4V, IOHM=2mA, from the equation ①,

$$Rpd \ge \frac{2.4}{2 \times 10^{-3}}$$

$$\therefore$$
 Rpd \geq 1.2 [k Ω]

With the value of Rpd to satisfy the above equation, VOHM becomes 2.4V or higher, and VIHE (=2.0V), the equation ② is also satisfied.

VIHE : EEPROM VIH specifications
 VOHM : Microcontroller VOH specifications
 IOHM : Microcontroller IOH specifications

3-2) DO is available in both pull up and pull down.

Do output become "High-Z" in other READY / BUSY output timing than after data output at read command and write command. When malfunction occurs at "High-Z" input of the microcontroller port connected to DO, it is necessary to pull down and pull up DO. When there is no influence upon the microcontroller operations, DO may be OPEN. If DO is OPEN, and at timing to output status READY, at timing of CS="H", SK="H", DI="H", EEPROM recognizes this as a start bit, resets READY output, and DO="High-Z", therefore, READY signal cannot be detected. To avoid such output, pull up DO pin for improvement.

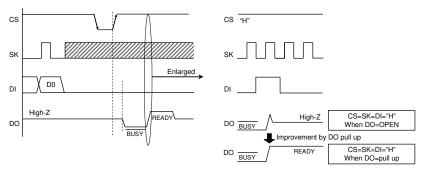


Figure 40. READY output timing at DO=OPEN

OPull up resistance Rpu and pull down resistance Rpd of DO pin

As for pull up and pull down resistance value, select an appropriate value to this resistance value from microcontroller VIH, VIL, and VOH, IOH, VOL, IOL characteristics of this IC.

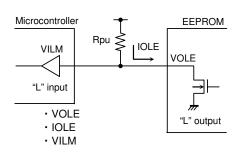


Figure 41. DO pull up resistance

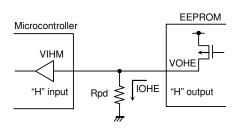


Figure 42. DO pull down resistance

Example) When V_{CC} =5V, VOLE=0.4V, IOLE=2.1mA, VILM=0.8V, from the equation ③,

$$Rpu \ge \frac{5-0.4}{2.1 \times 10^{-3}}$$

$$Rpu \ge 2.2 [k\Omega]$$

With the value of Rpu to satisfy the above equation, VOLE becomes 0.4V or below, and with VILM(=0.8V), the equation 4 is also satisfied.

VOLE : EEPROM VOL specifications
 IOLE : EEPROM IOL specifications
 VILM : Microcontroller VIL specifications

Example) When $V_{CC} = 5V$, VOHE=Vcc-0.2V, IOHE=0.1mA, $VIHM=Vcc\times0.7V$ from the equation 5

$$Rpd \ge \frac{5 - 0.2}{0.1 \times 10^{-3}}$$

$$Rpd \ge 48 [k\Omega]$$

With the value of Rpd to satisfy the above equation, VOHE becomes 2.4V or below, and with VIHM (=3.5V), the equation ⑥ is also satisfied.

VOHE: EEPROM VOH specifications
 IOHE: EEPROM IOH specifications
 VIHM: Microcontroller VIH specifications

OREADY / BUSY status display (DO terminal)

(common to BR93H56-WC, BR93H66-WC, BR93H76-WC, BR93H86-WC) This display outputs the internal status signal. When CS is started after tCS (Min.200ns)

from CS fall after write command input, "H" or "L" output.

R/B display="L" (
$$\overline{BUSY}$$
) = write under execution (DO status)

After the timer circuit in the IC works and creates the period of tE/W, this time circuit completes automatically. And write to the memory cell is made in the period of tE/W, and during this period, other command is not accepted.

 R/\overline{B} display = "H" (READY) = command wait status (DO status)

> Even after tE/W (max.10ms) (Max.5ms:BR93H66RFVM-WC) from write of the memory cell, the following command is accepted.

Therefore, CS="H" in the period of tE/W, and when input is in SK, DI, malfunction may occur, therefore,

DI="L" in the area CS="H". (Especially, in the case of shared input port, attention is required.)

*Do not input any command while status signal is output. Command input in BUSY area is cancelled, but command input in READY area is accepted. Therefore, status READY output is cancelled, and malfunction and mistake write may be made.

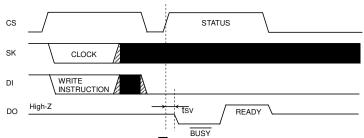


Figure 43. R/B status output timing chart

4) When to directly connect DI and DO

This IC has independent input terminal DI and output terminal DO, and separate signals are handled on timing chart, meanwhile, by inserting a resistance R between these DI and DO terminals, it is possible to carry out control by 1 control line.

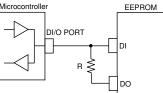


Figure 44. DI, DO control line common connection

OData collision of microcontroller DI/O output and DO output and feedback of DO output to DI input.

Drive from the microcontroller DI/O output to DI input on I/O timing, and signal output from DO output occur at the same time in the following points.

4-1) 1 clock cycle to take in A0 address data at read command

Dummy bit "0" is output to DO terminal.

→When address data A0 = "1" input, through current route occurs.

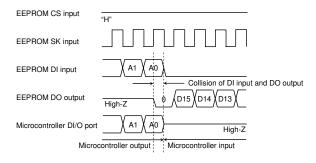


Figure 45. Collision timing at read data output at DI, DO direct connection

- 4-2) Timing of CS = "H" after write command. DO terminal in READY / BUSY function output. When the next start bit input is recognized, "HIGH-Z" gets in. →Especially, at command input after write, when CS input is started with microcontroller DI/O output "L", READY output "H" is output from DO terminal, and through current route occurs.
- Feedback input at timing of these 4-1) and 4-2) does not cause disorder in basic operations, if resistance R is inserted.

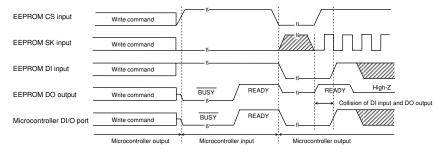


Figure 46. Collision timing at DI, DO direct connection

OSelection of resistance value R

The resistance R becomes through current limit resistance at data collision. When through current flows, noises of power source line and instantaneous stop of power source may occur. When allowable through current is defined as I, the following relation should be satisfied. Determine allowable current amount in consideration of impedance and so forth of power source line in set. And insert resistance R, and set the value R to satisfy EEPROM input level VIH/VIL, even under influence of voltage decline owing to leak current and so forth. Insertion of R will not cause any influence upon basic operations.

- 4-3) Address data A0 = "1" input, dummy bit "0" output timing (When microcontroller DI/O output is "H", EEPROM DO outputs "L", and "H" is input to DI)
 - Make the through current to EEPROM 10mA or below.
 - · See to it that the input level VIH of EEPROM should satisfy the following.

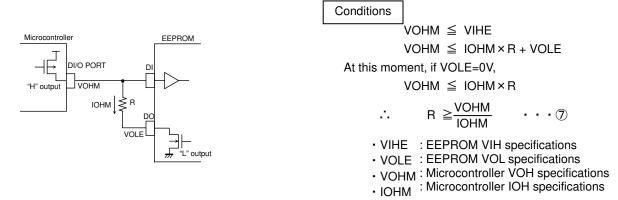
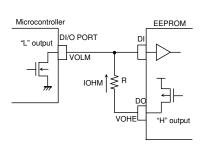



Figure 47. Circuit at DI, DO direct connection (Microcontroller DI/O "H" output, EEPROM "L" output)

4-4) DO status READY output timing

(When the microcontroller DI/O is "L", EEPROM DO outputs "H", and "L" is input to DI)

· Set the EEPROM input level VIL so as to satisfy the following.

$$\begin{array}{c|c} \hline \text{Conditions} \\ \hline & \text{VOLM} \; \geqq \; \text{VILE} \\ & \text{VOLM} \; \geqq \; \text{VOHE-IOLM} \times R \\ \hline \text{As this moment, if VOHE=Vcc,} \\ & \text{VOLM} \; \geqq \; \text{Vcc-IOLM} \times R \\ \hline \\ \hline \vdots \qquad \qquad R \; \geqq \frac{\text{Vcc-VOLM}}{\text{IOLM}} \qquad \cdots \qquad \textcircled{E}$$

 VILE : EEPROM VIL specifications · VOHE: EEPROM VOH specifications · VOLM: Microcontroller VOL specifications • IOLM : Microcontroller IOL specifications

Example) When Vcc=5V, VOHM=5V, IOHM=0.4mA, VOLM=5V, IOLM=0.4mA,

From the equation 7,

$$R \ge \frac{\text{VOHM}}{\text{IOHM}}$$

$$R \ge \frac{5}{0.4 \times 10^{-3}}$$

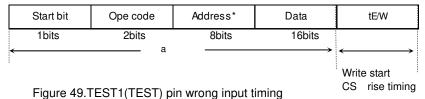
$$R \ge 12.5 [k\Omega] \cdots 9$$

From the equation 8,

Therefore, from the equations (9) and (10),

 $R \ge 12.5 [k\Omega]$

Figure 48. Circuit at DI, DO direct connection (Microcontroller DI/O "L" output, EEPROM "H" output)


5) Notes at test pin wrong input

٠.

There is no influence of external input upon TEST2 pin. For TEST1 (TEST)pin, input must be GND or OPEN. If H level is input, the following may occur,

- 1. At WEN, WDS, READ command input There is no influence by TEST1 (TEST) pin.
- 2. WRITE, WRAL command input

* BR93H56-WC, BR93H66-WC, address 8 bits BR93H76-WC, BR93H86-WC, address 10 bits

- a: There is no influence by TEST1 (TEST) pin.
- b: If H during write execution, it may not be written correctly. And H area remains BUSY and READY does not go back. Avoid noise input, and at use, be sure to connect it to GND terminal or set it OPEN.

6) Notes on power ON/OFF

· At power ON/OFF, set CS "L".

When CS is "H", this IC gets in input accept status (active). At power ON, set CS "L" to prevent malfunction from noise. (When CS is in "L" status, all inputs are cancelled.) At power decline low power status may prevail. Therefore, at power OFF, set CS "L" to prevent malfunction from noise.

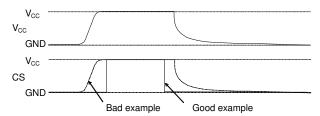
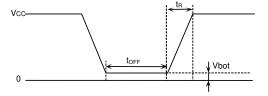


Figure 50. Timing at power ON/OFF

(Bad example) CS pin is pulled up to Vcc.

In this case, CS becomes "H" (active status), EEPROM may malfunction or have write error due to noises. This is true even when CS input is High-Z.

(Good example) It is "L" at power ON/OFF.


Set 10ms or higher to recharge at power OFF.

When power is turned on without observing this condition,
IC internal circuit may not be reset.

OPOR citcuit

This IC has a POR (Power On Reset) circuit as a mistake write countermeasure. After POR operation, it gets in write disable status. The POR circuit is valid only when power is ON, and does not work when power is OFF. However, if CS is "H" at power ON/OFF, it may become write enable status owing to noises and the likes. For secure operation, observe the follwing conditions.

- 1. Set CS="L"
- 2. Turn on power so as to satisfy the recommended conditions of tR, tOFF, Vbot for POR circuit operation.

Recommended c	Recommended conditions of tr, toff, Vbot					
t _R	t _{OFF}	Vbot				
10ms or below	10ms or higher	0.3V or below				
100ms or below	10ms or higher	0.2V or below				

Figure 51. Rise waveform diagram

OLVCC circuit

LVCC (Vcc-Lockout) circuit prevents data rewrite operation at low power, and prevents wrong write. At LVCC voltage (Typ.=1.9V) or below, it prevent data rewrite.

7) Noise countermeasures

OVcc noise (bypass capacitor)

When noise or surge gets in the power source line, malfunction may occur, therefore, for removing these, it is recommended to attach a by pass capacitor (0.1µF) between IC Vcc and GND, At that moment, attach it as close to IC as possible. And, it is also recommended to attach a bypass capacitor between board Vcc and GND.

OSK noise

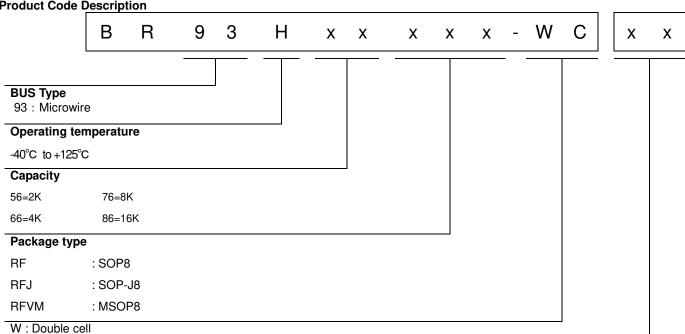
When the rise time (tR) of SK is long, and a certain degree or more of noise exists, malfunction may occur owing to clock bit displacement.

To avoid this, a Schmitt trigger circuit is built in SK input. The hysteresis width of this circuit is set about 0.3, if noises exist at SK input, set the noise amplitude 0.3p-p or below. And it is recommended to set the rise time (tR) of SK 100ns or below. In the case when the rise time is 100ns or higher, take sufficient noise countermeasures. Make the clock rise, fall time as small as possible.

Cautions on Use

- (1) Described numeric values and data are design representative values, and the values are not guaranteed.
- (2) We believe that application circuit examples are recommendable, however, in actual use, confirm characteristics further sufficiently. In the case of use by changing the fixed number of external parts, make your decision with sufficient margin in consideration of static characteristics and transition characteristics and fluctuations of external parts and our IC.
- (3) Absolute Maximum Ratings

If the absolute maximum ratings such as impressed voltage and operating temperature range and so forth are exceeded, IC may be destructed. Do not impress voltage and temperature exceeding the absolute maximum ratings. In the case of fear exceeding the absolute maximum ratings, take physical safety countermeasures such as fuses, and see to it that conditions exceeding the absolute maximum ratings should not be impressed to IC.


- (4) GND electric potential
 - Set the voltage of GND terminal lowest at any operating condition. Make sure that each terminal voltage is not lower than that of GND terminal in consideration of transition status.
- (5) Heat design

In consideration of allowable loss in actual use condition, carry out heat design with sufficient margin.

- (6) Terminal to terminal shortcircuit and wrong packaging When to package IC onto a board, pay sufficient attention to IC direction and displacement. Wrong packaging may destruct IC. And in the case of shortcircuit between IC terminals and terminals and power source, terminal and GND owing to foreign matter, IC may be destructed.
- (7) Use in a strong electromagnetic field may cause malfunction, therefore, evaluate design sufficiently.

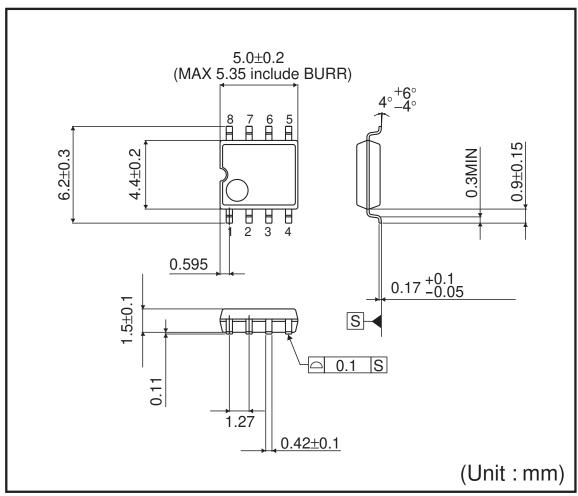
Ordering Information

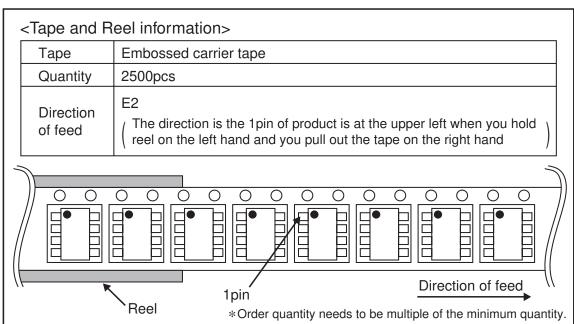
Product Code Description

Package specifications

C: For Automotive Application

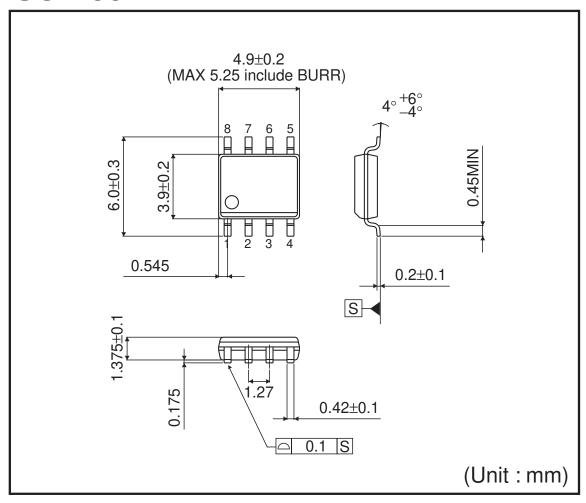
E2 : Embossed tape and reel (SOP8, SOP-J8)

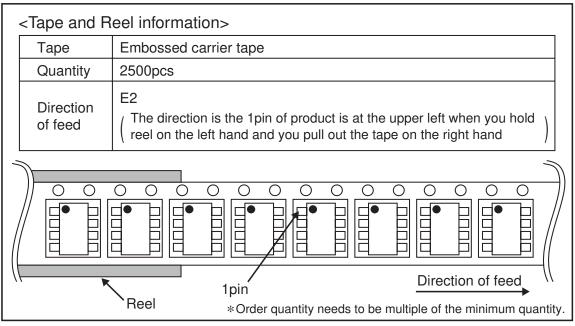

TR : Embossed tape and reel (MSOP8)


●Lineup

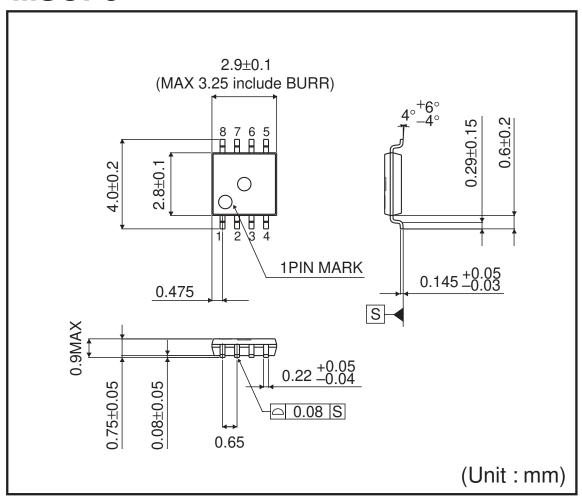
Conneity	Package				
Capacity	Type	Quantity			
2K	SOP8	Reel of 2500			
211	SOP-J8	neel of 2500			
	SOP8	Reel of 2500			
4K	SOP-J8	11661 01 2300			
	MSOP8	Reel of 3000			
8K	SOP8	Reel of 2500			
or	SOP-J8	neel of 2500			
16K	SOP8	Reel of 2500			
ION	SOP-J8	Heel 0f 2500			

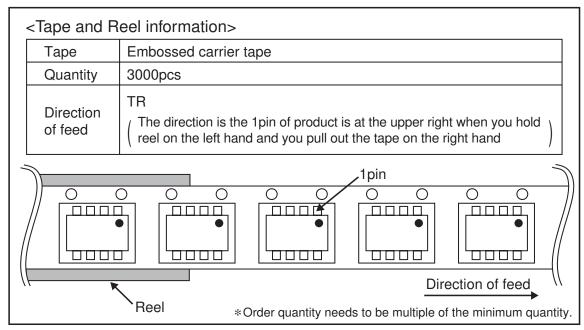
Physical Dimension Tape and Reel Information


SOP8



● Physical Dimension Tape and Reel Information - Continued


SOP-J8



● Physical Dimension Tape and Reel Information - Continued

MSOP8

