

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

SIPMOS® Small-Signal-Transistor

BSO 615NG

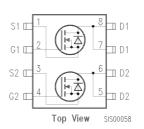
60

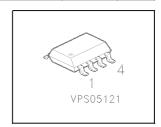
0.15

2.6

Ω

Features


Product Summary


Drain-Source on-state resistance

Drain source voltage

Continuous drain current

- Dual N Channel
- Enhancement mode
- Avalanche rated
- Logic Level
- dv/dt rated
- ⁶ Pb-free lead plating; RoHS compliant
- ° Qualified according to AEC Q101

 $V_{\overline{\text{DS}}}$

 $I_{\rm D}$

 $R_{\rm DS(on)}$

Туре	Package	Marking
BSO 615N	SO 8	615N

Maximum Ratings, at $T_i = 25$ °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Continuous drain current, one channel active	I _D	2.6	Α
Pulsed drain current, one channel active	<i>I</i> Dpulse	10.4	
$T_{A} = 25 ^{\circ}\text{C}$			
Avalanche energy, single pulse	E _{AS}	60	mJ
$I_{\rm D}$ = 2.6 A, $V_{\rm DD}$ = 25 V, $R_{\rm GS}$ = 25 Ω			
Avalanche current, periodic limited by T_{imax}	/ _{AR}	2.6	А
Avalanche energy, periodic limited by T_{jmax}	E _{AR}	0.18	mJ
Reverse diode dv/dt	d <i>v</i> /d <i>t</i>	6	kV/μs
$I_{S} = 2.6 \text{ A}, \ V_{DS} = 40 \text{ V}, \ di/dt = 200 \text{ A/}\mu\text{s},$			
$T_{\text{jmax}} = 150 ^{\circ}\text{C}$			
Gate source voltage	$V_{\rm GS}$	±20	V
Power dissipation, one channel active	P _{tot}	2	W
$T_{A} = 25 ^{\circ}\text{C}$			
Operating temperature	T_{i}	-55 + 150	°C
Storage temperature	$T_{\rm stg}$	-55 + 150	
IEC climatic category; DIN IEC 68-1		55/150/56	

Thermal Characteristics

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Characteristics				•	•
Thermal resistance, junction - soldering point	R _{thJS}	-	-	35	K/W
Thermal resistance @ 10 sec., min. footprint	R _{th(JA)}	-	-	100	
Thermal resistance @ 10 sec.,	$R_{\rm th(JA)}$	-	-	62.5	
6 cm ² cooling area ¹⁾					

Electrical Characteristics, at T_i = 25 °C, unless otherwise specified

Parameter	Symbol	Symbol Values			Unit
		min.	typ.	max.	
Static Characteristics					
Drain- source breakdown voltage	V _{(BR)DSS}	60	-	-	V
$V_{GS} = 0 \text{ V}, I_D = 0.25 \text{ mA}$, ,				
Gate threshold voltage, $V_{GS} = V_{DS}$	V _{GS(th)}	1.2	1.6	2	
$I_{\rm D} = 20 \; \mu {\rm A}$, ,				
Zero gate voltage drain current	l _{DSS}				μΑ
$V_{DS} = 60 \text{ V}, \ V_{GS} = 0 \text{ V}, \ T_j = 25 \text{ °C}$		-	0.1	1	
$V_{DS} = 60 \text{ V}, \ V_{GS} = 0 \text{ V}, \ T_j = 150 \text{ °C}$		-	10	100	
Gate-source leakage current	l _{GSS}	-	10	100	nA
$V_{GS} = 20 \text{ V}, \ V_{DS} = 0 \text{ V}$					
Drain-Source on-state resistance	R _{DS(on)}				Ω
$V_{\rm GS} = 4.5 \text{ V}, I_{\rm D} = 2.6 \text{ A}$		-	0.12	0.15	

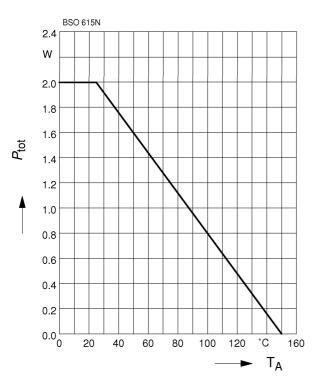
¹ Device on 40mm*40mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70μm thick) copper area for drain connection. PCB is vertical without blown air.

Electrical Characteristics

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Characteristics		•			•
Transconductance	9 _{fs}	2.4	5.5	-	S
$V_{\text{DS}} \ge 2^* I_{\text{D}}^* R_{\text{DS(on)max}}$, $I_{\text{D}} = 2.6 \text{ A}$					
Input capacitance	C _{iss}	-	300	380	рF
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$					
Output capacitance	C_{oss}	-	90	120	
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$					
Reverse transfer capacitance	C_{rss}	-	50	65	
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$					
Turn-on delay time	$t_{d(on)}$	-	12	20	ns
$V_{DD} = 30 \text{ V}, \ V_{GS} = 4.5 \text{ V}, \ I_{D} = 2.6 \text{ A},$					
$R_{\rm G}$ = 16 Ω					
Rise time	t_{r}	-	15	25	
$V_{\text{DD}} = 30 \text{ V}, \ V_{\text{GS}} = 4.5 \text{ V}, \ I_{\text{D}} = 2.6 \text{ A},$					
$R_{\rm G}$ = 16 Ω					
Turn-off delay time	$t_{\rm d(off)}$	-	20	30	
$V_{\text{DD}} = 30 \text{ V}, \ V_{\text{GS}} = 4.5 \text{ V}, \ I_{\text{D}} = 2.6 \text{ A},$					
$R_{\rm G}$ = 16 Ω					
Fall time	t _f	-	15	25	
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 4.5 V, $I_{\rm D}$ = 2.6 A,					
$R_{\rm G}$ = 16 Ω					

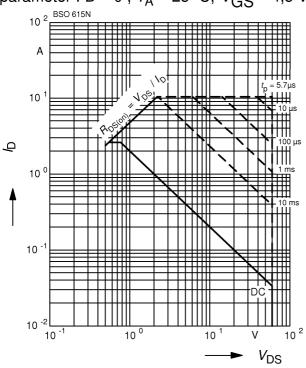
Electrical Characteristics, at $T_i = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit	
at $T_i = 25$ °C, unless otherwise specified		min.	typ.	max.		
Dynamic Characteristics						
Gate charge at threshold	Q _{G(th)}	-	0.4	0.6	nC	
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 0.1 A, $V_{\rm GS}$ = 1 V						
Gate charge at V _{qs} =5V	Q _{g(5)}	-	7	10		
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 2.6 A, $V_{\rm GS}$ = 0 to 5 V	9(5)					
Gate charge total	Q_{a}	-	14	20	nC	
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 2.6 A, $V_{\rm GS}$ = 0 to 10 V						
Gate plateau voltage	V _(plateau)	-	3.6	-	٧	
$V_{\rm DD}$ = 40 V, $I_{\rm D}$ = 2.6 A	(,2.33.2.3.2)					

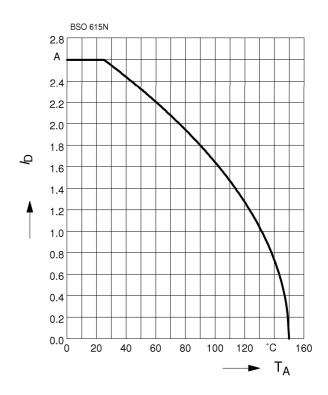

Reverse Diode

Inverse diode continuous forward current	Is	-	-	2.6	Α
<i>T</i> _A = 25 °C					
Inverse diode direct current,pulsed	/ _{SM}	-	-	10.4	
<i>T</i> _A = 25 °C					
Inverse diode forward voltage	V_{SD}	-	0.95	1.2	V
$V_{\rm GS} = 0 \text{ V}, I_{\rm F} = 5.2 \text{ A}$					
Reverse recovery time	t _{rr}	-	50	75	ns
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, di_{F}/dt = 100 \text{ A/}\mu\text{s}$					
Reverse recovery charge	Q _{rr}	-	0.1	0.15	μC
$V_{R} = 30 \text{ V}, I_{F} = I_{S}, dI_{F}/dt = 100 \text{ A/}\mu\text{s}$					

Power Dissipation

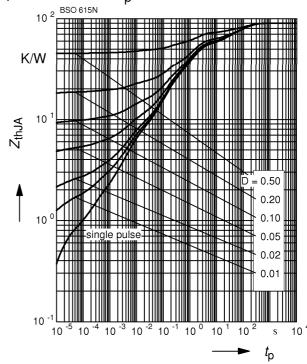

$$P_{\text{tot}} = f(T_{A}), V_{GS} = 4.5 \text{ V}$$

Safe operating area


$$I_{\mathsf{D}} = f(V_{\mathsf{DS}})$$

parameter :
$$D = 0$$
 , $T_A = 25$ °C, $V_{GS} = 4.5$ V

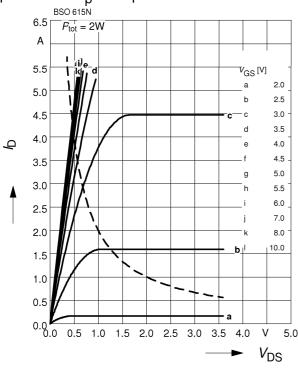
Drain current


$$I_{D} = f(T_{A}), \ V_{GS} = 4.5 \ V$$

Transient thermal impedance

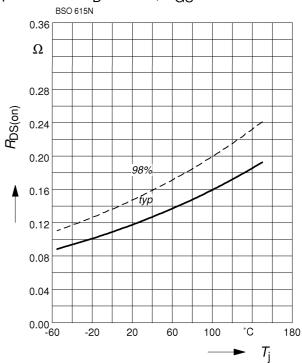
$$Z_{\text{thJA}} = f(t_{p})$$

parameter :
$$D = t_D/T$$



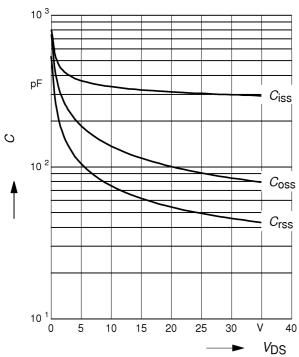
Typ. output characteristics

 $I_{\mathsf{D}} = f\left(V_{\mathsf{DS}}\right)$


parameter: $t_p = 80 \mu s$

Drain-source on-resistance

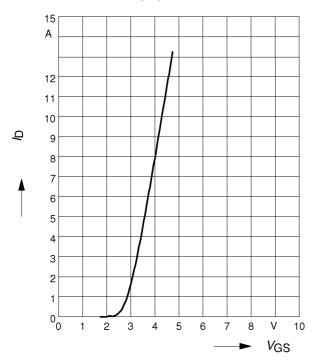
 $R_{DS(on)} = f(T_j)$


parameter : $I_D = 2.6 \text{ A}, V_{GS} = 4.5 \text{ V}$

Typ. capacitances

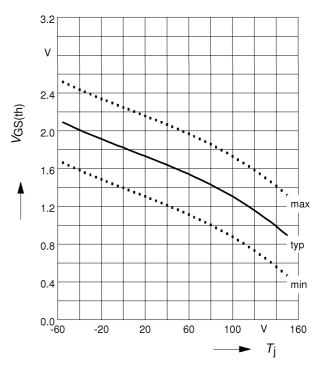
 $C = f(V_{DS})$

parameter: $V_{GS} = 0 \text{ V}, f = 1 \text{ MHz}$



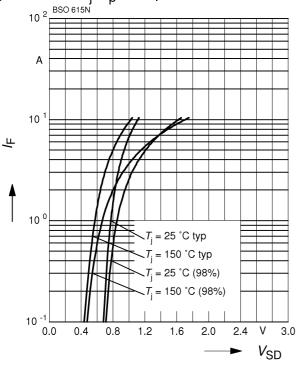
Typ. transfer characteristics I_{D} = $f(V_{GS})$

parameter: $t_p = 80 \mu s$


 $V_{DS} \ge 2 \times I_D \times R_{DS(on) \text{ max}}$

Gate threshold voltage

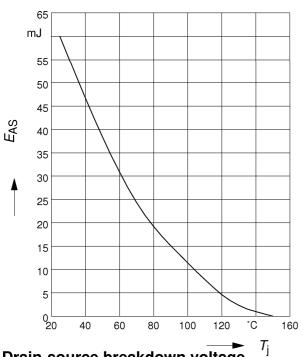
 $V_{GS(th)} = f(T_j)$


parameter : $V_{GS} = V_{DS}$, $I_D = 20 \mu A$

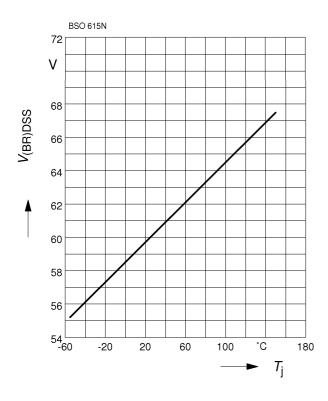
Forward characteristics of reverse diode

$$I_{\mathsf{F}} = f(V_{\mathsf{SD}})$$

parameter: T_j , $t_p = 80 \mu s$

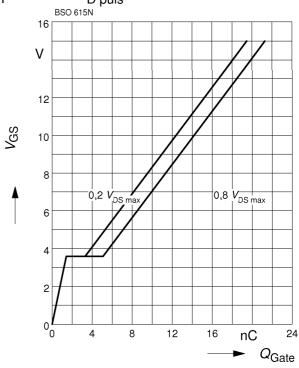


Avalanche Energy $E_{AS} = f(T_i)$


parameter: $I_D = 2.6 \text{ A}, V_{DD} = 25 \text{ V}$

$$R_{\rm GS} = 25~\Omega$$

Drain-source breakdown voltage


$$V_{(BR)DSS} = f(T_j)$$

Typ. gate charge

$$V_{\rm GS} = f(Q_{\rm Gate})$$

parameter: $I_{D \text{ puls}} = 2.6 \text{ A}$

