

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



### Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









#### Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <a href="http://www.nxp.com">http://www.nxp.com</a>, <a href="http://www.semiconductors.philips.com/">http://www.nxp.com</a>, <a href="http://www.nexperia.com/">http://www.nexperia.com/</a>, <a href="http://www.nexperia.com/">http://www.nexperia.com/</a>, <a href="http://www.nexperia.com/">use http://www.nexperia.com/</a>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

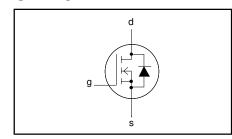
Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia


## N-channel TrenchMOS<sup>TM</sup> transistor Logic level FET

**BSS123** 

### **FEATURES**

- 'Trench' technology
- Extremely fast switching
- Logic level compatible
- Subminiature surface mounting package

### **SYMBOL**



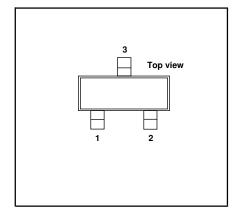
### **QUICK REFERENCE DATA**

$$V_{DSS} = 100 \text{ V}$$
 
$$I_D = 150 \text{ mA}$$
 
$$R_{DS(ON)} \le 6 \Omega \text{ (V}_{GS} = 10 \text{ V)}$$

### **GENERAL DESCRIPTION**

N-channel enhancement mode field-effect transistor in a plastic envelope using 'trench' technology.

### Applications:-


- Relay driver
- High-speed line driver
- Telephone ringer

The BSS123 is supplied in the SOT23 subminiature surface mounting package.

### **PINNING**

| PIN | DESCRIPTION |  |
|-----|-------------|--|
| 1   | gate        |  |
| 2   | source      |  |
| 3   | drain       |  |
|     |             |  |
|     |             |  |
|     |             |  |

### SOT23



### **LIMITING VALUES**

Limiting values in accordance with the Absolute Maximum System (IEC 134)

| SYMBOL                                                                    | PARAMETER                                                                                                 | CONDITIONS                                                                                                            | MIN.             | MAX.                             | UNIT               |
|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------|----------------------------------|--------------------|
| V <sub>DSS</sub><br>V <sub>DGR</sub><br>V <sub>GS</sub><br>I <sub>D</sub> | Drain-source voltage Drain-gate voltage Gate-source voltage Continuous drain current Pulsed drain current | $T_j = 25$ °C to 150°C<br>$T_j = 25$ °C to 150°C; $R_{GS} = 20$ kΩ<br>$T_a = 25$ °C<br>$T_a = 25$ °C<br>$T_a = 25$ °C | -<br>-<br>-<br>- | 100<br>100<br>± 20<br>150<br>600 | V<br>V<br>MA<br>mA |
| $P_{D}$ $T_{j}$ , $T_{stg}$                                               | Total power dissipation Operating junction and storage temperature                                        | T <sub>a</sub> = 25 °C                                                                                                | -<br>- 55        | 0.25<br>150                      | °C<br>W            |

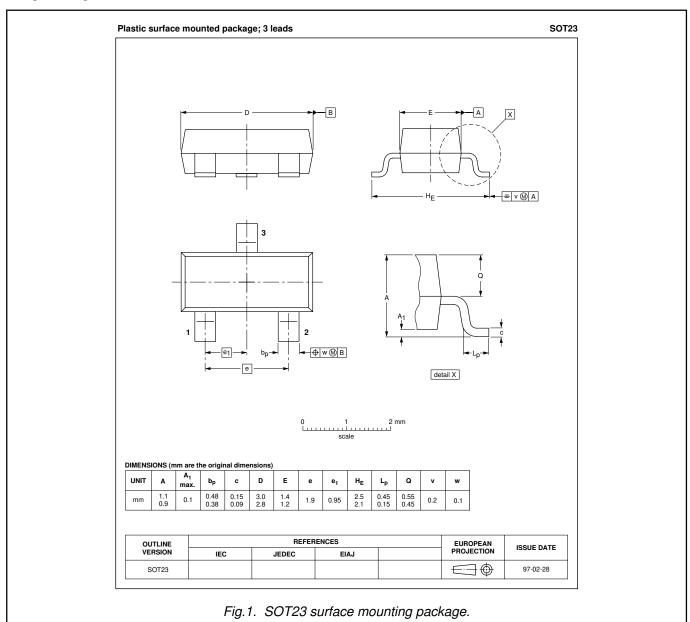
### THERMAL RESISTANCES

| SYMBOL              | PARAMETER                              | CONDITIONS                   | TYP. | MAX. | UNIT |
|---------------------|----------------------------------------|------------------------------|------|------|------|
| R <sub>th j-a</sub> | Thermal resistance junction to ambient | surface mounted on FR4 board | 500  | -    | K/W  |

# N-channel TrenchMOS $^{\mathrm{TM}}$ transistor Logic level FET

BSS123

### **ELECTRICAL CHARACTERISTICS**


 $T_{j}$ = 25°C unless otherwise specified

| SYMBOL              | PARAMETER                        | CONDITIONS                                                                                    | MIN. | TYP. | MAX. | UNIT |
|---------------------|----------------------------------|-----------------------------------------------------------------------------------------------|------|------|------|------|
| $V_{(BR)DSS}$       | Drain-source breakdown voltage   | $V_{GS} = 0 \text{ V}; I_{D} = 10  \mu\text{A}$                                               | 100  | 130  | 1    | ٧    |
| V <sub>GS(TO)</sub> | Gate threshold voltage           | $V_{DS} = V_{GS}$ ; $I_D = 1 \text{ mA}$                                                      | 1    | 2    | 2.8  | V    |
| $R_{DS(ON)}$        | Drain-source on-state resistance | $V_{GS} = 10 \text{ V}; I_{D} = 120 \text{ mA}$                                               | 1    | 3.5  | 6    | Ω    |
| $g_{fs}$            | Forward transconductance         | $V_{DS} = 25 \text{ V}; I_{D} = 120 \text{ mA}$                                               | ı    | 350  | -    | mS   |
| I <sub>DSS</sub>    | Zero gate voltage drain current  | $V_{DS} = 60 \text{ V}; V_{GS} = 0 \text{ V}$                                                 | -    | 10   | 100  | nA   |
| I <sub>GSS</sub>    | Gate source leakage current      | $V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$                                             | -    | 10   | 100  | nA   |
| t <sub>on</sub>     | Turn-on time                     | $V_{DD}$ = 50 V; $R_D$ = 250 $\Omega$ ; $V_{GS}$ = 10 V; $R_G$ = 50 $\Omega$ ; Resistive load | -    | 3    | 10   | ns   |
| $t_{\text{off}}$    | Turn-off time                    | ,                                                                                             | -    | 12   | 20   | ns   |
| C <sub>iss</sub>    | Input capacitance                | $V_{GS} = 0 \text{ V}; V_{DS} = 25 \text{ V}; f = 1 \text{ MHz}$                              | -    | 23   | 40   | рF   |
| Coss                | Output capacitance               |                                                                                               | -    | 6    | 25   | pF   |
| $C_{rss}$           | Feedback capacitance             |                                                                                               | -    | 4    | 10   | pF   |

# N-channel TrenchMOS<sup>TM</sup> transistor Logic level FET

**BSS123** 

### **MECHANICAL DATA**



### **Notes**

- 1. This product is supplied in anti-static packaging. The gate-source input must be protected against static discharge during transport or handling.
- 2. Refer to SMD Footprint Design and Soldering Guidelines, Data Handbook SC18.
- 3. Epoxy meets UL94 V0 at 1/8".

### N-channel TrenchMOS<sup>TM</sup> transistor Logic level FET

**BSS123** 

#### **DEFINITIONS**

| Data sheet status                                                                                        |                                                        |  |  |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--|--|
| Objective specification This data sheet contains target or goal specifications for product development.  |                                                        |  |  |
| Preliminary specification This data sheet contains preliminary data; supplementary data may be published |                                                        |  |  |
| Product specification                                                                                    | This data sheet contains final product specifications. |  |  |
| 1 !!!! !                                                                                                 |                                                        |  |  |

### Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

### **Application information**

Where application information is given, it is advisory and does not form part of the specification.

### © Philips Electronics N.V. 2000

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

### LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.