mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Bluetooth v4.0 Dual-Mode USB HCI Module Hardware Integration Guide

Version 1.5

BT800-ST

global solutions: local support.

Americas: +1-800-492-2320 Option 2 Europe: +44-1628-858-940 Hong Kong: +852-2923-0610 www.lairdtech.com/bluetooth

Version 1.5

REVISION HISTORY

Revision	Date	Changes
1.0	04 Sept 2013	Initial Release – Preliminary ST HIG
1.1	30 Sept 2014	Updated certification information (FCC, IC, CE, BT SIG)
1.2	07 Oct 2014	Updated Declaration of Conformity
1.3	14 Oct 2014	Removed X +/-1.3mm references
1.4	03 Dec 2014	Updated the Power Control and Regulation section.
1.5	02 July 2015	Added Tape/Reel (T/R) information

Version 1.5

CONTENTS

1	Scope	4
2	Operational Description	4
3	Block Diagram and Descriptions	5
4	Specifications	6
5	Pin Definitions	7
6	DC Electrical Characteristic	9
7	RF Characteristics	.10
8	Interface	.11
	8.1 PIO	.11
	8.2 WLAN Coexistence Interface	.11
	8.3 USB Interface	.12
	8.4 PCM Interface	.12
	8.5 GCI Interface	.14
	8.6 Slots and Sample Formats	.15
	8.7 PCM Liming Information	.16
	8.8 PCM Slave Timing	10
	8.9 PCIVI SIdve Mode Timing Parameters	. 18 10
	8.11 PCM Configuration	.19 20
	8.12 Digital Audio Interface (I2S)	20
9	Power Control and Regulation	20
5	9.1 USB Linear Regulator	22
	9.2 High-voltage Linear Regulator	23
	9.3 Voltage Regulator Enable and Reset	.23
	9.4 Power Sequencing	.23
10	Antenna Performance on BT800	.24
11	Mechanical Dimensions and Land Pattern	26
	11.1 BT800 Mechanical Drawing	26
	11.2 BT800-ST Mechanical Drawing	.27
12	Implementation Note	28
	12.1 PCB Layout on Host PCB	.28
13	Application Note for Surface Mount Modules	.30
	13.1 Introduction	.30
	13.2 Shipping Tray	.30
	13.3 Reflow Parameters	.31
	13.4 Tape/Reel (T/R)	.32
14	FCC and IC Regulatory	.33
4 -	14.1 Documentation Requirements	.33
15	European Union Regulatory	.36
	15.1 EU DECIDIRATIONS OF CONTONNILY	30 26
16	Ordering Information	סכ. דכ
10	16.1 General Comments	וכ . דב
17	Restorth SIG Approvals	
17	17.1 Application Note: Subsystem Combinations	. 72
	17.1 Application Note: Subsystem Combinations	39

Version 1.5

1 SCOPE

This document describes key hardware aspects of the Laird BT800 Bluetooth HCI/HID module. This document is intended to assist device manufacturers and related parties with the integration of this module into their host devices. Data in this document are drawn from a number of sources including data sheets for the CSR8510.

2 OPERATIONAL DESCRIPTION

The BT800 series of USB HCI devices are designed to meet the needs of OEMs adding robust Bluetooth connectivity and using embedded Bluetooth stacks within these products.

Leveraging the market-leading CSR8510 chipset, the BT800 series provides exceptionally low power consumption with outstanding range. Supporting the latest Bluetooth v4.0 Specification with EDR (Enhanced Data Rate), the Laird BT800 series enables OEMs to accelerate their development time for leveraging either Classic Bluetooth or Bluetooth Low Energy (BLE) into their operating system based devices.

With a tiny footprint as small as 8.5 x 13 mm, yet output power at 8 dBm, these modules are ideal for applications where designers need high performance in minimal size. For maximum flexibility in systems integration, the modules are designed to support a full speed USB interface plus GPIO and additionally I2S and PCM audio interfaces.

BT800 module

BT820 USB dongle

These modules present an HCI interface and have native support for Windows and Linux Bluetooth software stacks. All BT800 series devices are fully qualified as Bluetooth Controller Subsystem products. This also allows designers to integrate their existing pre-approved Bluetooth Host and Profile subsystem stacks to gain a Bluetooth END product approval for their products.

The BT800 series is engineered to provide excellent RF performance with integrated antenna and additional band pass filters. It further reduces regulatory and testing requirements for OEMs and ensures a hassle free development cycle. As an additional benefit of the BT800 series, Laird has implemented CSR's HID (Human Interface Device) Proxy Mode enabling out of the box HID connectivity for pointing devices and / or keyboard functionality, requiring zero host device software or configuration.

A fully featured, low-cost developer's kit is available for prototyping, debug, and integration testing of the BT800 series modules and further reduces risk and time in development cycles.

Note: Laird also offers a **BT800-ST version** which is a trace pin variant of the BT800 for use with an external antenna.

Features and Benefits 🚯 🖉 ROHS

- Bluetooth v4.0 Dual mode (Classic Bluetooth and BLE)
- Compact footprint
- 2-wire and 3-wire Wi-Fi coexistence scheme
- High antenna radiation gain and efficiency
- Good interference rejection for multi-com system (GSM/WCDMA)
- Class 1 output 8 dBm
- USB, GPIO, I2S, and PCM
- Industrial Temperature Range
- 64 k EEPROM support for HID Proxy mode
- Bluetooth Controller subsystem
- FCC, IC, CE, and MIC approvals

Application Areas

- Medical devices
- ePOS terminals
- Barcode scanners
- Industrial Cable Replacement
- M2M Connectivity
- Automotive Diagnostic Equipment
- Personal Digital Assistants (PDA)
- Bluetooth HID device (keyboard, mouse, joystick)

BT800-ST Hardware Integration Guide Version 1.5

3 BLOCK DIAGRAM AND DESCRIPTIONS

Figure 1: BT800 module block diagram

CS8510A10 (Main chip)	The BT800 is based on CSR8510A10 dual mode chip. The chip is a single-chip radio with on-chip LDO regulators and baseband IC for Bluetooth 2.4 GHz systems including EDR to 3 Mbps. Dedicated signal and baseband processing is included for full Bluetooth operation. The chip provides SPI/PCM and USB interfaces. Up to four general purpose I/Os are available for general use such as Wi-Fi coexistence or general indicators.					
	Note: The purpose of the SPI interface is to access the module's inner settings such as selecting different WLAN CO-EXIST scheme and enabling HID proxy mode. The SPI interface can also be used to put the module in RF test mode. You cannot use the module over the SPI interface for normal operation as the main host interface.					
Antenna Options	BT800 The antenna is a ceramic monopole chip antenna.BT800-ST A trace pin variant of the BT800 for use with an external antenna.					
Band Pass Filter	The band pass filter filters the out-of-band emissions from the transmitter to meet the specific regulations for type approvals of various countries.					
EEPROM	There are 64 k bits EEPROM embedded on the BT800 module which can be used to store customizable parameters, such as maximum TX power, PCM configuration, USB product ID, USB vendor ID, and USB product description. With that, the BT800 module can support HID/HCI Proxy mode.					
Crystal	The embedded 26 MHz crystal is used for generating the clock for the entire module.					

Version 1.5

4 SPECIFICATIONS

Table 1: BT800 specifications

CATEGORIES	Feature	IMPLEMENTATION
	Bluetooth®	V4.0 Dual Mode
	Frequency	2.402 - 2.480 GHz
	Maximum Transmit	Class 1
Wireless Specification	Power	+8 dBm from antenna
	Receive Sensitivity	-89 dBm
	Range	Circa 100 meters
	Data Rates	Up to 3 Mbps (over the air)
	USB	Full Speed USB 2.0
Host Interface	GPIO	Four configurable lines
		(1.8V/3.3V configurable by VDD_PADS)
Operational Modes	HCI	Host Controller Interface over USB
	HID Proxy Mode	Human Interface Device
EEPROM	2-wire	64 K bits
Convictorico	802.11 (Wi-Fi)	3 wire CSR schemes supported
Coexistence		(Unity-3;Unity-3e, and Unity+)
	Supply	5V +/-10%
Supply Voltage		Note: See <u>Implementation Note</u> for details on different DC
		power selections on the B1800.
Power Consumption	Current	Idle Mode ~5 mA File Transfer ~58 mΔ
	Internal (BT800)	Multilaver ceramic antenna with up to 41% efficiency
Antenna Option	External (BT800-ST)	A trace pin variant of the BT800 for use with an external antenna.
	Dimensions	8.5 x 13 x 1.75 mm (BT800) +/- 1.3mm (L/W)
Physical		8.5 x 13 x 1.7 mm (BT800-ST)
•		16 x 43 x 11 (BT820 – USB Dongle)
	Operating	-30C to +85C
Environmental	Storage	-40C to +85C
	Lead Free	Lead-free and RoHS compliant
Miscellaneous	Warranty	1 Year
	Bluetooth®	Controller Subsystem Approved
Approvais	FCC / IC / CE	All BT800 series (BT800; BT800-ST)

Version 1.5

5 PIN DEFINITIONS

Table 2: BT800 pin definitions

#	Pin Name	ΙΟ	Supply Domain	Description	lf Unused
1	SPI_PCM#_SEL	Input with weak internal pull-down	VDD_PADS	High switches SPI/PCM lines to SPI, Low switches SPI/PCM lines to PCM/PIO *See <u>Note 1</u> .	NC
2	VDD_HOST	Power supply	(3.1V-3.6V)	USB system positive supply	N/A
3	GND	GND	-	Ground	GND
4	USB+	Bidirectional	VDD_HOST	USB data plus with selectable internal 1.5k Ω pull-up resistor	NC
5	USB-	Bidirectional	VDD_HOST		NC
6	GND	GND	-	Ground	GND
7	VREG_IN_USB	Power supply	Analogue regulator input	Input to USB regulator. Connect to external USB bus supply (USB_VBUS)	N/A
8	VREG_EN_RST#	Input with strong internal pull-down	VDD_PADS	Take high to enable internal regulators. Also acts as active low reset. Maximum voltage is VDD_PADS. Note: USB regulator is always enabled and not controlled by this pin.	NC
9	VREG_IN_HV	Analogue regulator input / output	3.3V	Input to internal high-voltage regulator to 1.8V regulator, 3.3V output from USB regulator.	N/A
10	VREG_OUT_HV	Analogue regulator input / output	1.8V	Output from internal high- voltage to 1.8V regulator. Input to second stage internal regulators.	N/A
11	GND	GND	-	Ground	GND
12	GND	GND	-	Ground	GND
13	GND	GND	-	Ground	GND
14	GND	GND	-	Ground	GND
15	GND	GND	-	Ground	GND
16	GND	GND	-	Ground	GND
17		-		BT800- No connection	-
	RF		-	BT800-ST – Configured as RF signal output (50 ohm)	
18	GND	GND	-	Ground	GND

Version 1.5

#	Pin Name	VO	Supply Domain	Description	lf Unused
19	PCM_SYNC/ SPI_CS#/ PIO23	Bidirectional, tri-state, with weak internal pull-down	VDD_PADS	PCM synchronous data sync SPI chip select, active low Programmable input/output line *See <u>Note 1</u> .	NC
20	PCM_CLK/ SPI_CLK/ PIO24	Bidirectional, tri-state, with weak internal pull-down	VDD_PADS	PCM synchronous data clock SPI clock Programmable input/output line *See <u>Note 1</u> .	NC
21	PCM_IN/ SPI_MOSI/ PIO21	Input, tri-state, with weak internal pull- down	VDD_PADS	PCM synchronous data input SPI data input Programmable input/output line *See <u>Note 1</u> .	NC
22	PCM_OUT/ SPI_MISO/ PIO22	Output, tri-state, with weak internal pull- down	VDD_PADS	PCM synchronous data output SPI data output Programmable input/output line *See <u>Note 1</u> .	NC
23	PIOO/ WLAN_ACTIVE	Bidirectional, tri-state, with weak internal pull- down	VDD_PADS	Programmable input/output line	NC
24	GND	GND	-	Ground	GND
25	PIO1/ BT_PIRORITY	Bidirectional, tri-state, with weak internal pull- down	VDD_PADS	Programmable input/output line	NC
26	PIO2/ BT_ACTIVE	Bidirectional, tri-state, with weak internal pull- down	VDD_PADS	Programmable input/output line	NC
27	VDD_PADS	Power supply	(1.7V-3.6V)	Positive supply for digital I/O pads	N/A
28	PIO5	Bidirectional, tri-state, with weak internal pull- down	VDD_PADS	Programmable input/output line	NC

Note 1: The purpose of the SPI interface is to access the module's inner settings such as selecting different WLAN CO-EXIST scheme and enabling HID proxy mode. The SPI interface can also be used to put the module in RF test mode. You cannot use the module over the SPI interface for normal operation as the main host interface.

Version 1.5

6 DC ELECTRICAL CHARACTERISTIC

Table 3: Absolute maximum ratings

Rating	Min	Max	Unit
Storage temperature	-40	+85	⁰ C
VREG_IN_USB	-0.2	5.75	V
VREG_IN_HV	-0.2	4.9	V
VDD_HOST	-0.2	3.7	V
VDD_PADS	-0.2	3.7	V
Other terminal voltages	VSS - 0.4V	VDD + 0.4 V	V

Table 4: Recommended operating conditions

Rating	Min	Max	Unit
Operating temperature	-30	+85	⁰ C
VREG_IN_USB	4.5	5.5	V
VREG_IN_HV	3.1	3.6	V
VDD_HOST	3.1	3.6	V
VDD_PADS	1.7	3.6	V

Table 5: USB Linear Regulator

Rating	Min	Тур	Max	Unit
Input voltage (VREG_IN_USB)	4.5	5.0	5.5	V
Output voltage (VREG_IN_HV)	3.2	3.3	3.4	V
Output current	-	-	150	mA

Table 6: High-voltage Linear Regulator

Normal Operation	Min	Тур	Max	Unit
Input voltage (VREG_IN_HV)	3.1	3.3	3.6	V
Output voltage (VREG_OUT_HV)	1.75	1.85	1.95	V
Temperature coefficient	-200	-	200	ppm/⁰C
Output noise (frequency range 100Hz to100kHz)	-	-	0.4	mV rms
Settling time (settling time within 10% of final value)	-	-	5	μs
Output current	-	-	100	mA
Quiescent current (excluding load, load <1mA)	30	40	60	μΑ
Low	v-power Moc	le		
Quiescent current (excluding load, load <100µA)	14	18	23	μΑ

Version 1.5

Table 7: Digital I/O Characteristics

Normal Operation	Min	Тур	Max	Unit
Ir	nput Voltage			
VIL input logic level low	-0.4	-	0.4	V
VIH input logic level high	0.7 x VDD	-	VDD + 0.4	V
0	utput Voltage	9		
VOL output logic level low, IOL = 4.0 mA	-	-	0.4	V
VOH output logic level high, IOL = 4.0 mA	0.75 x VDD	-	-	V
Input ar	nd Tristate Cu	urrents		
Strong pull-up	-150	-40	-10	μA
Strong pull-down	10	40	150	μA
Weak pull-up	-5	-1.0	-0.33	μA
Weak pull-down	0.33	1.0	5.0	μA
CI input capacitance	1.0	-	5.0	pF

Table 8: Current Consumption

Normal Operation	Peak (8 dBm)	AVG	Unit
Idle		5	mA
USB Suspend		200	μA
Inquiry	73	51	mA
File Transfer	73	58	mA
LE Connected (Master)	74		mA
LE Scan (Master)	48		mA

7 RF CHARACTERISTICS

Table 9: Receiver Characteristics

RF Characteristics , V temperature unless	/DD = 3.3V @ room otherwise specified	Min	Тур.	Max	BT. Spec.	Unit
Maximum RF Transr		8	10	20	dBm	
RF power variation over temperature range			1.5		-	dB
RF power variation of			0.2	-	dB	
RF power variation over BT band			2		-	dB
RF power control range		-21		8	-	dBm
20 dB band width for modulated carrier					1000	kHz
АСР	$F = F_0 \pm 2MHz$				-20	
	$F = F_0 \pm 3MHz$				-40	

Version 1.5

RF Characteristics, VDD = 3.3V @ room temperature unless otherwise specified	Min	Тур.	Max	BT. Spec.	Unit
$F = F_0 > 3MHz$				-40	
Drift rate		10		+/-25	kHz
ΔF _{1avg}		165		140<175	kHz
ΔF1 _{max}		168		140<175	kHz
ΔF_{2avg} / ΔF_{1avg}		0.9		>=0.8	

Table 10: BDR and EDR receiver sensitivity

RF Characteristics, VDD = 3.3V @ room temp.	Packet Type	Min	Тур	Max	BT. Spec.	Unit
	DH1		-89		-70	dBm
	DH3		-89			dBm
Sensitivity for 0.1% BER	DH5		-89			dBm
	2-DH5		-92			dBm
	3-DH5		-85			dBm
Sensitivity variation over BT band	All		2			dB
Sensitivity variation over temperature range	All		TBD			dB

8 INTERFACE

8.1 PIO

See the Device Terminal Functions section for the list of supplies to the PIOs (Programmable I/O ports).

PIO lines are configured through software to have either weak or strong pull-ups or pull-downs. All PIO lines are configured as inputs with weak pull-downs at reset and have additional individual bus-keeper configuration.

8.2 WLAN Coexistence Interface

Dedicated hardware is provided to implement a variety of WLAN coexistence schemes. There is support for:

- Channel skipping AFH
- Priority signaling
- Channel signaling
- Host passing of channel instructions

The BT800 supports the WLAN coexistence schemes:

- Unity-3
- Unity-3e
- Unity+

For more information see **BT800 WLAN Coexistence Schemes and LED Indication**.

Version 1.5

8.3 USB Interface

BT800 has a full-speed (12 Mbps) USB interface for communicating with other compatible digital devices. The USB interface on the BT800 acts as a USB peripheral, responding to requests from a master host controller.

BT800 supports the Universal Serial Bus Specification (USB v2.0 Specification) and USB Battery Charging Specification, available from <u>http://www.usb.org</u>. For more information on how to integrate the USB interface on BT800, see Figure 19 located in the following section: <u>USB Dongle Design Example Using BT800</u>.

As well as describing USB basics and architecture, the application note describes:

- Power distribution for high and low bus-powered configurations
- Power distribution for self-powered configuration, which includes USB VBUS monitoring
- USB enumeration
- Electrical design guidelines for power supply and data lines, as well as PCB tracks and effects of ferrite beads
- USB suspend modes and Bluetooth low-power modes
- Global suspend
- Selective suspend, includes remote wake
- Wake on Bluetooth, includes permitted devices and set-up prior to selective suspend
- Suspend mode current draw
- PIO status in suspend mode
- Resume, detach, and wake PIOs
- Battery charging from USB: dead battery provision, charge currents, charging in suspend modes and USB
- VBUS voltage consideration
- USB termination when interface is not in use
- Internal modules, certification and non-specification compliant operation

8.4 PCM Interface

The audio PCM interface on the BT800 supports:

- Continuous transmission and reception of PCM encoded audio data over Bluetooth.
- Processor overhead reduction through hardware support for continual transmission and reception of PCM data.
- A bidirectional digital audio interface that routes directly into the baseband layer of the firmware. It does not pass through the HCI protocol layer.
- Hardware on the BT800 for sending data to and from a SCO connection.
- Up to three SCO connections on the PCM interface at any one time.
- PCM interface master, generating PCM_SYNC and PCM_CLK.
- PCM interface slave, accepting externally generated PCM_SYNC and PCM_CLK.
- Various clock formats including:
 - Long Frame Sync
 - Short Frame Sync
- GCI timing environments.
- 13-bit or 16-bit linear, 8-bit μ-law, or A-law companded sample formats.
- Receives and transmits on any selection of three of the first four slots following PCM_SYNC.

The PCM configuration options are enabled by setting PSKEY_PCM_CONFIG32.

8.4.1 PCM Interface Master/Slave

When configured as the master of the PCM interface, the BT800 generates PCM_CLK and PCM_SYNC.

Version 1.5

Figure 2: PCM Interface Master

Figure 3: PCM Interface Slave

8.4.2 Long Frame Sync

Figure 4: Long Frame Sync (shown with 8-bit Companded Sample)

Long Frame Sync is the name given to a clocking format that controls the transfer of PCM data words or samples. In Long Frame Sync, the rising edge of PCM_SYNC indicates the start of the PCM word. When the BT800 is configured as PCM master, generating PCM_SYNC and PCM_CLK, then PCM_SYNC is eight bits long. When the BT800 is configured as PCM Slave, PCM_SYNC is from one cycle PCM_CLK to half the PCM_SYNC rate.

BT800 samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising edge. PCM_OUT is configurable as high impedance on the falling edge of PCM_CLK in the LSB position or on the rising edge.

8.4.3 Short Frame Sync

In Short Frame Sync, the falling edge of PCM_SYNC indicates the start of the PCM word. PCM_SYNC is always one clock cycle long.

Version 1.5

PCM SYNC	
PCM_CLK	
PCM_OUT	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
PCM_IN	Undefined 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Undefined

Figure 5: Short Frame Sync (Shown with 16-bit Sample)

As with Long Frame Sync, BT800 samples PCM_IN on the falling edge of PCM_CLK and transmits PCM_OUT on the rising edge. PCM_OUT is configurable as high impedance on the falling edge of PCM_CLK in the LSB position or on the rising edge.

8.4.4 Multi-Slot Operation

More than 1 SCO connection over the PCM interface is supported using multiple slots. Up to 3 SCO connections are carried over any of the first 4 slots.

LONG_PCM_SYNC	
Or	
SHORT_PCM_SYNC	
PCM_CLK	
PCM_OUT	
PCM IN	Do Not Care 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 Do Not Care

Figure 6: Multi-slot Operation with 2 Slots and 8-bit Companded Samples

8.5 GCI Interface

BT800 is compatible with the GCI, a standard synchronous 2B+D ISDN timing interface. The two 64 kbps B channels are accessed when this mode is configured.

Figure 7: Multi-slot Operation

The start of frame is indicated by the rising edge of PCM_SYNC and runs at 8 kHz.

Americas: +1-800-492-2320 Europe: +44-1628-858-940 Hong Kong: +852-2923-0610 www.lairdtech.com/bluetooth

Version 1.5

8.6 Slots and Sample Formats

BT800 receives and transmits on any selection of the first four slots following each sync pulse. Slot durations are either 8 or 16 clock cycles:

- 8 clock cycles for 8-bit sample formats.
- 16 clock cycles for 8-bit, 13-bit, or 16-bit sample formats.

BT800 supports:

- 13-bit linear, 16-bit linear and 8-bit μ-law or A-law sample formats
- A sample rate of 8 ksps
- Little or big endian bit order
- For 16-bit slots, the three or eight unused bits in each slot are filled with sign extension, padded with zeros or a programmable 3-bit audio attenuation compatible with some codecs.

Figure 8: 16-bit Slot Length and Sample Formats

Version 1.5

8.7 PCM Timing Information

Table 11: PCM Timing information

Symbol	Parameter		Min	Тур	Max	Unit
fmclk	PCM_CLK frequency	4MHz DDS generation. Frequency selection is programmable.	-	128 256 512	-	kHz
INCK		48MHz DDS generation. Frequency selection is programmable.	2.9	-	-	kHz
-	PCM_SYNC frequency fo	r SCO connection	-	8	-	kHz
t _{mclkh} (a)	PCM_CLK high	4MHz DDS generation	980	-	-	ns
t _{mclkl} a)	PCM_CLK low	4MHz DDS generation	730	-	-	ns
-	PCM_CLK jitter	48MHz DDS generation	-	-	21	ns pk-pk
	Delay time from	4MHz DDS generation	-	-	20	ns
tdmclksynch PCM_CLK high to PCM_SYNC high	48MHz DDS generation	-	-	40.83	ns	
t _{dmclkpout}	Delay time from PCM_C	LK high to valid PCM_OUT	-	-	20	ns
	Delay time from	4MHz DDS generation	-	-	20	ns
tdmclklsyncl	PCM_CLK low to		-		40.83	
unentsyner	PCM_SYNC low (long frame sync only)	48MHz DDS generation		-		ns

(a) Assumes normal system clock operation. Figures vary during low-power modes, when system clock speeds are reduced.

Table 12: PCM Master Mode Timing Parameters

Symbol	Parameter		Min	Тур	Max	Unit
t _{dmclkhsyncl}	Delay time from	4MHz DDS generation	-	-	20	ns
	PCM_CLK high to PCM_SYNC low	48MHz DDS generation	-	-	40.83	ns
t _{dmclklpoutz}	Delay time from PCM_CLK low to PCM_OUT high impedance		-	-	20	ns
t _{dmclkhpoutz}	Delay time from PCM_CLK high to PCM_OUT high impedance		-	-	20	ns
t _{supinclkl}	Set-up time for PCM_IN valid to PCM_CLK low		20	-	-	ns
t _{hpinclkl}	Hold time for PCM_CLK low to PCM_IN invalid		0	-	-	ns

Version 1.5

Figure 9: PCM Master Timing Long Frame Sync

Figure 10: PCM Master Timing Short Frame Sync

8.8 PCM Slave Timing

Symbol	Parameter	Min	Тур	Max	Unit
f _{sclk}	PCM clock frequency (Slave mode: input)	64	-	2048	kHz
f _{sclk}	PCM clock frequency (GCI mode)	128	-	4096	kHz

Americas: +1-800-492-2320 Europe: +44-1628-858-940 Hong Kong: +852-2923-0610 www.lairdtech.com/bluetooth

Version 1.5

Symbol	Parameter	Min	Тур	Max	Unit
t _{sclkl}	PCM_CLK low time	200	-	-	ns
t _{sclkh}	PCM_CLK high time	200	-	-	ns

8.9 PCM Slave Mode Timing Parameters

Symbol	Parameter	Min	Тур	Max	Unit
thsclksynch	Hold time from PCM_CLK low to PCM_SYNC high	2	-	-	ns
t _{susclksynch}	Set-up time for PCM_SYNC high to PCM_CLK low	20	-	-	ns
t _{dpout}	Delay time from PCM_SYNC or PCM_CLK, whichever is later, to valid PCM_OUT data (long frame sync only)	-	-	15	ns
tdsclkhpout	Delay time from CLK high to PCM_OUT valid data	-	-	15	ns
t _{dpoutz}	Delay time from PCM_SYNC or PCM_CLK low, whichever is later, to PCM_OUT data line high impedance	-	-	20	ns
t _{supinsclkl}	Set-up time for PCM_IN valid to CLK low	20	-	-	ns
t _{hpinsclkl}	Hold time for PCM_CLK low to PCM_IN invalid	2	-	-	ns

Figure 11: PCM Slave Timing Long Frame Sync

Version 1.5

Figure 12: PCM Slave Timing Short Frame Sync

8.10 PCM_CLK and PCM_SYNC Generation

BT800 has two methods of generating PCM_CLK and PCM_SYNC in master mode:

- Generating these signals by DDS from BT800internal 4MHz clock. Using this mode limits PCM_CLK to 128, 256 or 512 kHz and PCM_SYNC to 8 kHz.
- Generating these signals by DDS from an internal 48MHz clock, which enables a greater range of frequencies to be generated with low jitter but consumes more power. To select this second method set bit 48M_PCM_CLK_GEN_EN in PSKEY_PCM_CONFIG32. When in this mode and with long frame sync, the length of PCM_SYNC is either 8 or 16 cycles of PCM_CLK, determined by LONG_LENGTH_SYNC_EN in PSKEY_PCM_CONFIG32.

Equation 8.1 describes PCM_CLK frequency when generated from the internal 48MHz clock:

 $f = \frac{CNT_RATE}{CNT_LIMIT} \times 24MHz$

Equation 8.1: PCM_CLK Frequency Generated Using the Internal 48MHz Clock

Set the frequency of PCM_SYNC relative to PCM_CLK using Equation 8.2:

$$f = \frac{PCM_CLK}{SYNC_LIMIT \times 8}$$

Equation 8.2: PCM_SYNC Frequency Relative to PCM_CLK

CNT_RATE, CNT_LIMIT and SYNC_LIMIT are set using PSKEY_PCM_LOW_JITTER_CONFIG. As an example, to generate PCM_CLK at 512kHz with PCM_SYNC at 8kHz, set SKEY_PCM_LOW_JITTER_CONFIG to 0x08080177.

Version 1.5

8.11 PCM Configuration

Configure the PCM by using PSKEY_PCM_CONFIG32 and PSKEY_PCM_LOW_JITTER_CONFIG (See your PSKey file). The default for PSKEY_PCM_CONFIG32 is 0x00800000 (for example: first slot following sync is active, 13-bit linear voice format, long frame sync and interface master generating 256kHz PCM_CLK from 4MHz internal clock with no tri-state of PCM_OUT).

8.12 Digital Audio Interface (I²S)

The digital audio interface supports the industry standard formats for I²S, left-justified or right-justified. The interface shares the same pins as the PCM interface, which means each audio bus is mutually exclusive in its usage. Table 13 lists these alternative functions. Figure 11 shows the timing diagram.

Table 13: Alternative Functions of the Digital Audio Bus Interface on the PCM Interface.

PCM Interface	I ² S Interface
PCM_OUT	SD_OUT
PCM_IN	SD_IN
PCM_SYNC	WS
PCM_CLK	SCK

Configure the digital audio interface using PSKEY_DIGITAL_AUDIO_CONFIG, see BlueCore Audio API Specification and the PS Key file.

Figure 13: PCM Configuration

Americas: +1-800-492-2320 Europe: +44-1628-858-940 Hong Kong: +852-2923-0610 www.lairdtech.com/bluetooth

Version 1.5

The internal representation of audio samples within BT800is 16-bit and data on SD_OUT is limited to 16-bit per channel.

Table 14: Digital Audio Interface Slave Timing

Symbol	Parameter	Min	Тур	Max	Unit
-	SCK Frequency	-	-	6.2	MHz
-	WS Frequency	-	-	96	kHz
t _{ch}	SCK high time	80	-	-	ns
t _{cl}	SCK low time	80	-	-	ns

Table 15: I2S Slave Mode Timing

Symbol	Parameter	Min	Тур	Max	Unit
t _{ssu}	WS valid to SCK high set-up time	20	-	-	ns
t _{sh}	SCK high to WS invalid hold time	2.5	-	-	ns
t _{opd}	SCK low to SD_OUT valid delay time	-	-	20	ns
t _{isu}	SD_IN valid to SCK high set-up time	20	-	-	ns
t _{ih}	SCK high to SD_IN invalid hold time	2.5	-	-	ns

Figure 14: Digital Audio Interface Slave Timing

Table 16: Digital Audio Interface Master Timing

Symbol	Parameter	Min	Тур	Max	Unit
-	SCK Frequency	-	-	6.2	MHz
-	WS Frequency	-	-	96	kHz

Table 17: I²S Master Mode Timing Parameters, WS and SCK as Outputs

Symbol	Parameter	Min	Тур	Max	Unit
t _{spd}	SCK low to WS valid delay time	-	-	39.27	ns

Version 1.5

Symbol	Parameter	Min	Тур	Max	Unit
t _{opd}	SCK low to SD_OUT valid delay time	-	-	18.44	ns
t _{isu}	SD_IN valid to SCK high set-up time	18.44	-	-	ns
t _{ih}	SCK high to SD_IN invalid hold time	0	-	-	ns
WS(Output)	∑ ↓tspd		χ		
SCK(Output) —		/			
SD_OUT	Load X		χ		
SD IN	tisu t		-t _{ib}		

Figure 15: Digital Audio Interface Master Timing

9 **POWER CONTROL AND REGULATION**

See the Example Application Schematic (Figure 19) for the regulator configuration. BT800 contains three regulators:

- USB linear regulator, to generate the 3.3 V from the USB bus power and the input to the high-voltage linear regulator.
- High-voltage linear regulator, to generate the main 1.8 V from the USB linear regulator or an external 3.3 V. This regulator then feeds the three low-voltage regulators:
 - Low-voltage VDD_DIG linear regulator, a programmable low-voltage regulator to supply a 0.90 V to1.25 V digital supply, VDD_DIG.
 - Low-voltage VDD_ANA linear regulator, to supply the radio supply, VDD_RADIO.
 - Low-voltage VDD_AUX linear regulator, to supply the auxiliary supply, VDD_AUX.

9.1 USB Linear Regulator

The integrated USB LDO linear regulator is available as a 3.3 V supply rail and is intended to supply the USB interface and the high-voltage linear regulator. The input voltage range is between 4.25 V and 5.75 V. The maximum current from this regulator is 150 mA, of which 50 mA is available for external use (for example EEPROM/LED). Internally decouple the output of this regulator using a low ESR MLC capacitor to the VREG_IN_HV pin. No externally decouple capacitor is required. For hassle environment, an output capacitor of 1µF to 4.7µF (\pm 20%) is preferred.

This regulator is enabled by default. If the USB linear regulator is not required, leave its input (VREG_IN_USB) unconnected.

Version 1.5

9.2 High-voltage Linear Regulator

The integrated high-voltage linear regulator is available to power the main 1.8 V supply rail. The input voltage range is between 2.3 V and 4.8 V. The maximum current from this regulator is 100 mA. Internally decouple the output of this regulator using a low ESR MLC capacitor of a 2.2 μ F to the VREG_OUT_HV pin. No externally decouple capacitor is required. For hassle environment, an output capacitor of 1 μ F to 4.7 μ F (±20%) is preferred. Take VREG_EN_RST# high to enable this regulator. If this regulator is not required, then leave VREG_IN_HV unconnected or tied to VREG_OUT_HV.

9.3 Voltage Regulator Enable and Reset

A single pin, VREG_EN_RST#, controls both the regulator enables and the digital reset function. All the regulators are enabled, except the USB linear regulator, by taking the VREG_EN_RST# pin above 1 volt. Software also controls the regulators. The VREG_EN_RST# pin is connected internally to the reset function and is powered from VDD_HOST, so do not apply voltages above VDD_HOST to the VREG_EN_RST# pin. The REG_EN_RST# pin is pulled down internally before the software starts. The VREG_EN_RST# pin is an active low reset. Assert the reset signal for a period >5 ms to ensure a full reset.

Note: The regulator enables are released as soon as VREG_EN_RST# is low, so the regulators shut down. Therefore do not take VREG_EN_RST# low for less than 5 ms, as a full reset is not guaranteed.

Other reset sources are:

Power-on reset Via a software-configured watchdog timer

A warm reset function is also available under software control. After a warm reset the RAM data remains available.

9.4 Power Sequencing

CSR recommends that all power supplies are powered at the same time. The order of powering the supplies relative to the I/O supply, VDD_PADS to VDD_HOST, is not important. If the I/O supply is powered before VDD_DIG, all digital I/Os are weak pull-downs regardless of the reset state.

Version 1.5

10 ANTENNA PERFORMANCE ON BT800

Figure 16 illustrates antenna performance.

		Gain	Table				
Unit in dPi @2 44CHz	XY-p	olane	XZ-	plane	ne YZ-plane		Efficiency
Unit in dDI $(a/2.440)$	Peak	Avg.	Peak	Avg.	Peak	Avg.	Enclency
A1	-3.5	-4.2	3.8	-5.3	3.2	-4.7	41.0%

Figure 16: BT800 Gain Table

Figure 17: Network Analyzer output

Version 1.5

.....

Unit : dBi

	Peak gain	Avg. gain
XY-plane	-3.5	-4.2

	Peak gain	Avg. gain
XZ-plane	3.8	-5.3

♦YZ-plane

	Peak gain	Avg. gain
YZ-plane	3.2	-4.7