

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

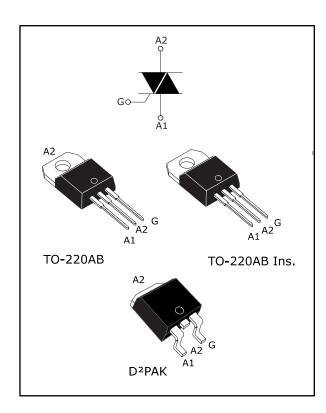
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



BTA12, BTB12, T12xx

12 A Snubberless™, logic level and standard Triacs

Datasheet - production data

Features

- Medium current Triac
- Low thermal resistance with clip bonding
- Low thermal resistance insulation ceramic for insulated BTA
- High commutation (4Q) or very high commutation (3Q) capability
- BTA series UL1557 certified (file ref: 81734)
- Packages are RoHS (2002/95/EC) compliant

Applications

ON/OFF or phase angle function in applications such as static relays, light dimmers and appliance motors speed controllers.

The Snubberless TM versions (BTA/BTB...W and T12 series) are especially recommended for use on inductive loads, because of their high commutation performance. The BTA series provide an insulated tab (rated at 2500 V_{RMS}).

Description

Available either in through-hole or surface mount packages, the BTA12, BTB12 and T12xx Triac series are suitable for general purpose mains power AC switching.

Table 1: Device summary

Symbol	T12xx	BTA12	BTB12
I _{T(RMS)}	12 12		12
V_{DRM}/V_{RRM}	600/800		
I _{GT} (Snubberless)	5/10/35/50		
I _{GT} (standard)	- 25/50		

1 Characteristics

Table 2: Absolute maximum ratings

Table 2. Absolute maximum ratings							
Symbol	Parameter	Value	Unit				
I _{T(RMS)}	RMS on-state current (full sine wave)	I ² PAK / D ² PAK / TO-220AB	T _c = 105 °C	12	Α		
		TO-220AB Ins.	T _c = 90 °C				
l	Non repetitive surge peak on-state current	F = 50 Hz	$t_p = 20 \text{ ms}$	120	^		
ITSM	(full cycle, T _j initial = 25 °C)	F = 60 Hz	$t_p = 16.7 \text{ ms}$	126	Α		
l ² t	I ² t value for fusing	$t_p = 10 \text{ ms}$	78	A ² s			
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$	F = 120 Hz	T _j = 125 °C	50	A/μs		
V _{DSM} /V _{RSM}	Non repetitive surge peak off-state voltage	t _p = 10 ms	T _j = 25 °C	V _{DRM} /V _{RRM} + 100	٧		
I _{GM}	Peak gate current $t_p = 20 \mu s$		T _j = 125 °C	4	Α		
$P_{G(AV)}$	Average gate power dissipation	1	W				
T _{stg}	Storage junction temperature range	-40 to +150	°C				
Tj	Operating junction temperature range		-40 to +125	°C			

Table 3: Electrical characteristics (T_j = 25 °C, unless otherwise specified) - Snubberless and logic level Triac (3 quadrants)

Shubbeness and logic level triac (3 quadrants)								
				T1205	T1210	T1235	T1250	
Symbol	Parameter	Quadrant		BTB12-TW	BTB12-SW	BTB12-CW	BTB12-BW	Unit
				BTA12-TW	BTA12-SW	BTA12-CW	BTA12-BW	
Igт ⁽¹⁾	V _D = 12 V,		Max.	5	10	35	50	mA
V_{GT}	R _L = 30 Ω		Max.		1.3	3		V
V _{GD}	$\begin{split} V_D &= V_{DRM}, \\ R_L &= 3.3 \ k\Omega, \\ T_j &= 125 \ ^{\circ}C \end{split}$	- -	Min.	0.2			V	
L	I _G = 1.2 x I _{GT}	1 - III II	Max.	10 15	25 30	50 60	70 80	mA
IH ⁽²⁾	I _{TM} = 100 mA		Max.	10	15	35	50	mA
dV/dt ⁽²⁾	V _D = 67 % V _{DRM} gate open, 125 °C		Min.	20	40	500	1000	V/µs
	(dV/dt)c = 0.1 V/μs, 125 °C			3.5	6.5			
(dI/dt)c ⁽²⁾	(dV/dt)c = 10 V/p	us, 125 °C	Min.	1	2.9			A/ms
	Without snubber, 125 °C					6.5	12	

Notes:

 $^{^{(1)}\!}Minimum~I_{GT}$ is guaranteed at 5% of I_GT max.

⁽²⁾For both polarities of A2 referenced to A1

Table 4: Electrical characteristics ($T_{\rm j}$ = 25 °C, unless otherwise specified) - standard Triac (4 quadrants)

Symbol	Parameter	Quadrant		Value		Unit	
Syllibol	Farameter	Quaurani		С	В	Uiiit	
I _{GT} ⁽¹⁾		1 - 11 - 111	Max.	25	50	mA	
IGI	$V_D = 12 \text{ V}, R_L = 30 \Omega$	IV IVIA		50	100	1117	
V _{GT}		All	Max.	1.3		٧	
V_{GD}	$V_D = V_{DRM}, R_L = 3.3 \text{ k}\Omega, T_j = 125 \text{ °C}$	All	Min.	0.2		٧	
IL	IG = 1.2 x IGT	I - III - IV	Max.	40	50	mA	
IL.	IG = 1.2 X IGT	II	iviax.	80	100		
IH ⁽²⁾	I _{TM} = 500 mA	Max.	25	50	mA		
dV/dt ⁽²⁾	V _D = 67 % V _{DRM} , gate open, 125 °C	Min.	200	400	\//uo		
(dV/dt)c ⁽²⁾	(dl/dt)c = 5.3 A/ms, 125 °C		Min.	5	10	V/µs	

Notes:

Table 5: Static electrical characteristics

Symbol	Test Conditions	Tj		Value	Unit
V _{TM} ⁽¹⁾	$I_{TM} = 17 \text{ A}, t_p = 380 \ \mu s$	25 °C	Max.	1.55	٧
V _{TO} ⁽²⁾	threshold on-state voltage	125 °C	Max.	0.85	٧
R _D ⁽²⁾	Dynamic resistance	125 °C	Max.	35	mΩ
1/1	V _{DRM} = V _{BRM}	25 °C	Max.	5	μΑ
I _{DRM} /I _{RRM}	V DRM = V RRM	125 °C	iviax.	1	mA

Notes:

Table 6: Thermal resistance

Symbol	Parameter		Value	Unit	
R _{th(j-c)}	Junction to case (AC)	D ² PAK / TO-220AB	Max.	1.4	
() =/	, ,	TO-220AB insulated		2.3	00.00
	Junction to ambient (S = 1 cm ²) ⁽¹⁾	D ² PAK	Тур.	45	°C/W
R _{th(j-a)}	Junction to ambient	TO-220AB / TO-220AB insulated	Тур.	60	

Notes:

 $[\]ensuremath{^{(1)}}\mbox{Minimum I}_{\mbox{\scriptsize GT}}$ is guaranteed at 5% of IgT max.

⁽²⁾For both polarities of A2 referenced to A1.

⁽¹⁾For both polarities of A2 referenced to A1

⁽¹⁾Copper surface under tab.

1.1 **Characteristics (curves)**

Figure 1: Maximum power dissipation versus on-state RMS current (full cycle) P(W) 12 10

IT(RMS)(A)

temperature (full cycle) $I_{T(RMS)}(A)$ 13 BTB/T12 11 10 8 7 6 5 4 3 2 T_C(°C) 0 25 50 100 125

Figure 2: RMS on-state current versus case

Figure 3: RMS on-state current versus ambient temperature (printed circuit board FR4, copper thickness: 35 µm) (full cycle)

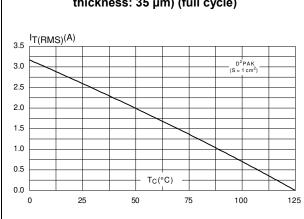


Figure 4: Relative variation of thermal impedance versus pulse duration

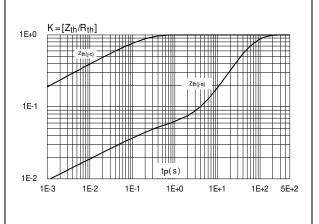


Figure 5: On-state characteristics (maximum values)

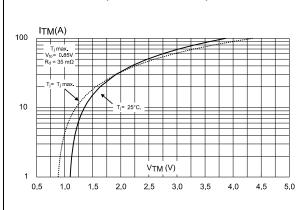
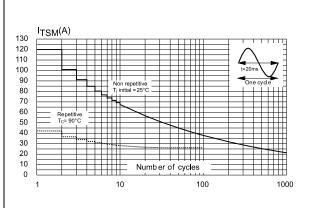



Figure 6: Surge peak on-state current versus number of cycles

DocID7473 Rev 10 4/13

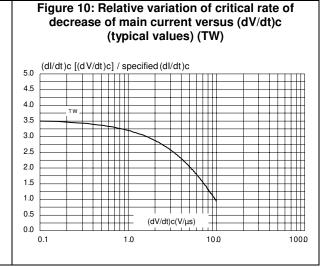
Figure 7: Non-repetitive surge peak on-state current

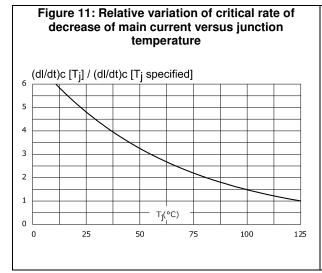
ITSM(A)

IOOO

ITSM(A)

IOOO


ITSM(A)


IOOO

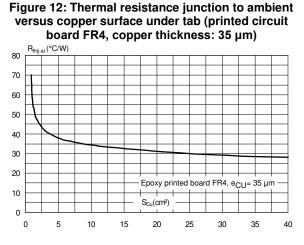

IOO

Figure 8: Relative variation of gate trigger current,

holding current and latching current versus

2 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

- Epoxy meets UL 94,V0
- Lead-free package

2.1 D²PAK package information

Figure 13: D²PAK package outline

Resin gate
0.5 mm max
protusion (1)

A

A

A

A

A

(1)Resin gate position accepted in one of the two positions or in the symmetrical opposites.

Table 7: D2PAK package mechanical data

			•	imensions		
Ref.		Millimeters			Inches ⁽¹⁾	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.30		4.60	0.1693		0.1811
A1	2.49		2.69	0.0980		0.1059
A2	0.03		0.23	0.0012		0.0091
В	0.70		0.93	0.0276		0.0366
B2	1.25	1.40		0.0492	0.0551	
С	0.45		0.60	0.0177		0.0236
C2	1.21		1.36	0.0476		0.0535
D	8.95		9.35	0.3524		0.3681
D1	7.50		8.00	0.2953		0.3150
D2	1.30		1.70	0.0512		0.0669
E	10.00		10.28	0.3937		0.4047
E1	8.30		8.70	0.3268		0.3425
E2	6.85		7.25	0.2697		0.2854
G	4.88		5.28	0.1921		0.2079
L	15		15.85	0.5906		0.6240
L2	1.27		1.40	0.0500		0.0551
L3	1.40		1.75	0.0551		0.0689
R		0.40			0.0157	
V2	0°		8°	0°		8°

Notes:

10.30 16.90 5.08

 $^{^{(1)}\}mbox{Dimensions}$ in inches are given for reference only

TO-220AB (NIns. and Ins.) package information 2.2

Figure 15: TO-220AB (NIns. and Ins.) package outline

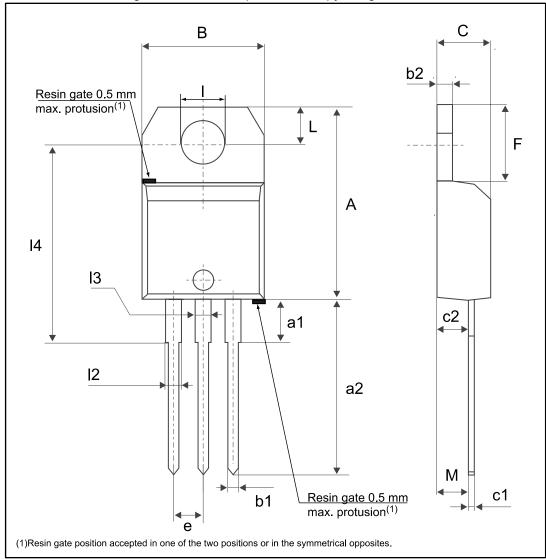


Table 8: TO-220AB (Nins. and Ins.) package mechanical data

			-	mensions		
Ref.		Millimeters			Inches ⁽¹⁾	
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	15.20		15.90	0.5984		0.6260
a1		3.75			0.1476	
a2	13.00		14.00	0.5118		0.5512
В	10.00		10.40	0.3937		0.4094
b1	0.61		0.88	0.0240		0.0346
b2	1.23		1.32	0.0484		0.0520
С	4.40		4.60	0.1732		0.1811
c1	0.49		0.70	0.0193		0.0276
c2	2.40		2.72	0.0945		0.1071
е	2.40		2.70	0.0945		0.1063
F	6.20		6.60	0.2441		0.2598
1	3.73		3.88	0.1469		0.1528
L	2.65		2.95	0.1043		0.1161
12	1.14		1.70	0.0449		0.0669
13	1.14		1.70	0.0449		0.0669
14	15.80	16.40	16.80	0.6220	0.6457	0.6614
М		2.6			0.1024	

Notes

 $^{^{(1)}}$ Inch dimensions are for reference only.

3 Ordering information

Figure 16: BTA12 and BTB12 series ordering information scheme

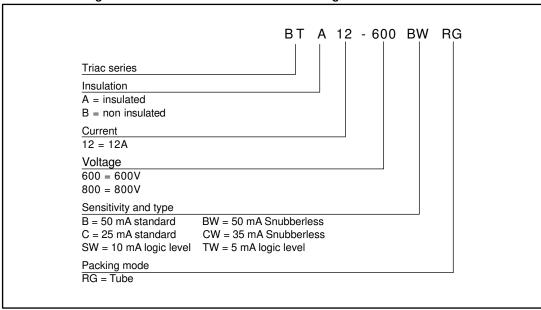
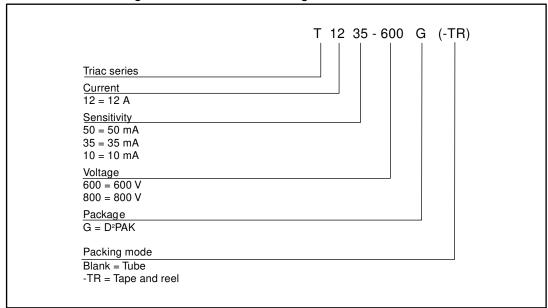



Figure 17: T12xx series ordering information scheme

Table 9: Product selector

Doub words on	Voltag	e (xxx)	O init-th-	T	Davidson.
Part number	600	800	Sensitivity	Туре	Package
BTB12-600C	Х		25 mA	Standard	TO-220AB
BTB12-600B	Х		50 mA	Standard	TO-220AB
BTB12-600TW	Х		5 mA	Snubberless™	TO-220AB
BTB12-600SW	Х		10 mA	Snubberless™	TO-220AB
BTB12-xxxCW	Х	Х	35 mA	Snubberless™	TO-220AB
BTB12-600BW	Х		50 mA	Snubberless™	TO-220AB
BTA12-600C	Х		25 mA	Standard	TO-220AB Ins.
BTA12-xxxB	Х	Х	50 mA	Standard	TO-220AB Ins.
BTA12-600TW	Х		5 mA	Snubberless™	TO-220AB Ins.
BTA12-xxxSW	Х	Х	10 mA	Snubberless™	TO-220AB Ins.
BTA12-xxxCW	Х	Х	35 mA	Snubberless™	TO-220AB Ins.
BTA12-xxxBW	Х	Х	50 mA	Snubberless™	TO-220AB Ins.
T1205-600G	Х		5 mA	Snubberless™	D ² PAK
T1210-6G	Х		10 mA	Snubberless™	D ² PAK
T1210-800G		Х	10 mA	Snubberless™	D ² PAK
T1235-xxxG	Х	Х	35 mA	Snubberless™	D ² PAK
T1250-600G	Х		50 mA	Snubberless™	D ² PAK

Table 10: Ordering information

Order code	Marking	Package	Weight	Base qty.	Delivery mode
BTA12-600BRG	BTA12-600B				
BTA12-600BWRG	BTA12-600BW				
BTA12-600CRG	BTA12-600C				
BTA12-600CWRG	BTA12-600CW				
BTA12-600SWRG	BTA12-600SW	TO-220AB Ins.			
BTA12-600TWRG	BTA12-600TW	10-220AB IIIs.			
BTA12-800BRG	BTA12-800B				
BTA12-800BWRG	BTA12-800BW				
BTA12-800CWRG	BTA12-800CW		1.9 g	50	Tube
BTA12-800SWRG	BTA12-800SW				
BTB12-600BRG	BTB12-600B				
BTB12-600BWRG	BTB12-600BW				
BTB12-600CRG	BTB12-600C				
BTB12-600CWRG	BTB12-600CW	TO-220AB			
BTB12-600SWRG	BTB12-600SW				
BTB12-600TWRG	BTB12-600TW				
BTB12-800CWRG	BTB12-800CW				
T1205-600G-TR	T1205-600G				
T1210-6G-TR	T1210-6G				
T1210-800G-TR	T1210-800G			1000	Tape and reel
T1235-600G-TR	T1235-600G	D ² PAK	1 20 a	1000	13"
T1235-800G-TR	T1235-800G	D-LWV	1.38 g		
T1250-600G-TR	T1250-600G				
T1210-6G	T1210-6G			50	Tube
T1235-600G	T1235-600G			50	rube

4 Revision history

Table 11: Document revision history

Date	Revision	Changes
Sep-2002	6A	Last update.
25-Mar-2005	7	1. I2PAK package added. 2. TO-220AB delivery mode changed from bulk to tube.
27-May-2005	8	T1210 added
28-Sep-2007	9	Reformatted to current standards. T1250 added
02-Feb-2017	10	Removed I ² PAK package. Updated Figure 7: "Non-repetitive surge peak on-state current" and Table 9: "Product selector" and Table 10: "Ordering information".

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

