Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! ## Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China ## PROFET™+ 24V ## BTF6070-2EKV ## Smart High-Side Power Switch Dual Channel 60 $m\Omega$ | Package | PG-DSO-14-40 EP | |---------|-----------------| | Marking | BTF6070-2EKV | ## 1 Overview #### **Application** - Suitable for 24 V Trucks and Transportation Systems - Specially designed to drive Valve Applications - Can be used for PWM frequencies up to 1.5 kHz - Suitable for resistive, inductive and capacitive loads - Replaces electromechanical relays, fuses and discrete circuits Application Diagram with BTF6070-2EKV #### Overview #### **Basic Features** - Dual channel device - Fast switching device - For 12 V and 24 V grounded loads - Very low stand-by current - 3.3 V and 5 V compatible logic inputs - Electrostatic discharge protection (ESD) - Optimized electromagnetic compatibility - Logic ground independent from load ground - Very low power DMOS leakage current in OFF state - Green product (RoHS compliant) - **AEC** qualified #### Description The BTF6070-2EKV is a 60 m Ω dual channel Smart High-Side Power Switch, embedded in a PG-DSO-14-40 EP, Exposed Pad package, providing protective functions and diagnosis. The power transistor is built by an N-channel vertical power MOSFET with charge pump. The device is integrated in Smart6 HV technology. It is specially designed to drive Valve Applications in the harsh automotive environment. For lighting applications the nominal bulb load of P10W+P5W 24 V or P10W 12 V is considered. Table 1 **Product Summary** | Parameter | Symbol | Value | |---|----------------------|----------| | Operating voltage range | $V_{S(OP)}$ | 5 V 36 V | | Maximum supply voltage | $V_{S(LD)}$ | 65 V | | Maximum ON state resistance at $T_J = 150$ °C per channel | R _{DS(ON)} | 135 mΩ | | Nominal load current (one channel active) | I _{L(NOM)1} | 3 A | | Nominal load current (all channels active) | I _{L(NOM)2} | 2.3 A | | Typical current sense ratio | k _{ILIS} | 1730 | | Minimum current limitation | I _{L5(SC)} | 9 A | | Maximum standby current with load at $T_J = 25$ °C | I _{S(OFF)} | 500 nA | #### **Diagnostic Functions** - Proportional load current sense for the 2 channels - Open load detection in ON and OFF - Short circuit to battery and ground indication - Overtemperature switch off detection - Stable diagnostic signal during short circuit - Enhanced $k_{\text{H IS}}$ dependency with temperature and load current #### Overview ## **Protection Functions** - Stable behavior during undervoltage - Reverse polarity protection with external components - Secure load turn-off during logic ground disconnection with external components - Overtemperature protection with latch - Overvoltage protection with external components - Enhanced short circuit operation ## **Table of Contents** | 1 | Overview | . 1 | |--|---|--| | | Table of Contents | . 4 | | 2 | Block Diagram | . 6 | | 3
3.1
3.2
3.3 | Pin Configuration Pin Assignment Pin Definitions and Functions Voltage and Current Definition | . 7 | | 4.1
4.2
4.3
4.3.1
4.3.2 | General Product Characteristics Absolute Maximum Ratings Functional Range Thermal Resistance PCB set up Thermal Impedance | 12
12
12 | | 5 | Power Stage | | | 5.1
5.2
5.3
5.3.1
5.3.2
5.4
5.5 | Output ON-State Resistance Turn ON/OFF Characteristics with Resistive Load Inductive Load Output Clamping Maximum Load Inductance Inverse Current Capability Electrical Characteristics Power Stage | 16
16
16
17 | | 6
6.1
6.2
6.3
6.4
6.5
6.5.1
6.5.2 | Protection Functions Loss of Ground Protection Undervoltage Protection Overvoltage Protection Reverse Polarity Protection Overload Protection Current Limitation Temperature Limitation in the Power DMOS Electrical Characteristics for the Protection Functions | 20
21
21
22
22
22
22 | | 7
7.1
7.2
7.3 | Diagnostic Functions IS Pins SENSE Signal in Different Operating Modes SENSE Signal in the Nominal Current Range | 25
26 | | 7.3.1
7.3.2
7.3.3
7.3.3.1 | SENSE Signal Variation as a Function of Temperature and Load Current SENSE Signal Timing | 27
28
29 | | 7.3.3.2
7.3.3.3
7.3.4
7.3.5 | Open Load in OFF Diagnostic | 29
30
30 | | 7.3.6
7.4
8 | SENSE Signal in Case of Overload | 32 | | _ | | ~ | | 8.2
8.3 | Input Circuitry DEN Pin Input Pin Voltage | . 35
. 35 | |------------|--|--------------| | | Electrical Characteristics Application Information Further Application Information | 37 | | 10 | Package Outlines | 39 | | 11 | Revision History | 40 | **Block Diagram** ## 2 Block Diagram Figure 1 Block Diagram for the BTF6070-2EKV **Pin Configuration** ## 3 Pin Configuration ## 3.1 Pin Assignment Figure 2 Pin Configuration ## 3.2 Pin Definitions and Functions Table 2 Pin Definition and Functions | Pin | Symbol | Function | |-------------|----------------|---| | 1 | GND | GrouND; Ground connection | | 2 | IN0 | INput channel 0; Input signal for channel 0 activation | | 3 | DEN | Diagnostic ENable; Digital signal to enable/disable the diagnosis of the device | | 4 | IS0 | Sense 0; Sense current of the channel 0 | | 5, 11 | NC | Not Connected; No internal connection to the chip | | 6 | IN1 | INput channel 1; Input signal for channel 1 activation | | 7 | IS1 | Sense 1; Sense current of the channel 1 | | 8, 9, 10 | OUT1 | OUTput 1; Protected high side power output channel 1 ¹⁾ | | 12, 13, 14 | OUT0 | OUTput 0; Protected high side power output channel 0 ¹⁾ | | Cooling Tab | V _S | Voltage Supply; Battery voltage | ¹⁾ All output pins of a given channel must be connected together on the PCB. All pins of an output are internally connected together. PCB traces have to be designed to withstand the maximum current which can flow. ## **Pin Configuration** ## 3.3 Voltage and Current Definition Figure 3 shows all terms used in this data sheet, with associated convention for positive values. Figure 3 Voltage and Current Definition ## 4 General Product Characteristics ## 4.1 Absolute Maximum Ratings Table 3 Absolute Maximum Ratings 1) $T_J = -40$ °C to 150°C; (unless otherwise specified) | Parameter | Symbol | | Value | S | Unit | Note or Test Condition | Number | |---|------------------------|------|-------|------|----------|---|----------| | | | Min. | Тур. | Max. | | | | | Supply Voltages | | | · | | | | | | Supply voltage | V _S | -0.3 | - | 48 | V | - | P_4.1.1 | | Reverse polarity voltage | -V _{S(REV)} | 0 | - | 28 | V | t < 2 min
$T_A = 25 ^{\circ}\text{C}$
$R_L \ge 25 \Omega$ | P_4.1.2 | | Supply voltage for short circuit protection | V _{BAT(SC)} | 0 | - | 36 | V | $R_{\text{ECU}} = 30 \text{ m}\Omega$
$R_{\text{Supply}} = 10 \text{ m}\Omega$
$L_{\text{Supply}} = 5 \mu\text{H}$
$R_{\text{Cable}} = 7 m\Omega/\text{m}$
$L_{\text{Cable}} = 1 \mu\text{H/m},$
l = 0 to 40 m
See Chapter 6 and Figure 29 | P_4.1.3 | | Supply voltage for Load dump protection | $V_{S(LD)}$ | - | - | 65 | V | $^{2)}R_1 = 2 \Omega$
$R_L = 25 \Omega$ | P_4.1.12 | | Short Circuit Capability | 1 | | | | | 1 | 1 | | Permanent short circuit IN pin toggles | n _{RSC1} | - | - | 100 | k cycles | $^{3)}$ $V_{\text{Supply}} = 28 \text{ V}$ $R_{\text{ECU}} = 20 \text{ m}\Omega$ $R_{\text{Supply}} = 10 \text{ m}\Omega$ $L_{\text{Supply}} = 5 \text{ μH}$ $R_{\text{Cable}} = 0 \text{ m}\Omega$ $L_{\text{Cable}} = <1 \text{ μH}$ | P_4.1.4 | | Permanent short circuit IN pin toggles | n _{RSC_highL} | - | - | 100 | k cycles | $^{3)}$ $V_{\text{Supply}} = 28 \text{ V}$ $R_{\text{ECU}} = 30 \text{ m}\Omega$ $R_{\text{Supply}} = 10 \text{ m}\Omega$ $L_{\text{Supply}} = 5 \text{ μH}$ RCable = 280 mΩ $L_{\text{Cable}} = 40 \text{ μH}$ | P_4.1.5 | | Input Pins | * | | + | | | | + | | Voltage at INPUT pins | V_{IN} | -0.3 | - | 6 | V | - | P_4.1.13 | | Voltage at INPUT pins | V _{IN} | - | - | 7 | V | t < 2 min | P_4.1.6 | | Current through INPUT pins | | -2 | - | 2 | mA | - | P_4.1.14 | | Voltage at DEN pin | V_{DEN} | -0.3 | - | 6 | V | - | P_4.1.15 | | Voltage at DEN pin | V_{DEN} | - | | 7 | V | <i>t</i> < 2 min | P_4.1.50 | ## PROFET™+ 24V #### BTF6070-2EKV #### **General Product Characteristics** #### Absolute Maximum Ratings (cont'd)1) Table 3 $T_J = -40$ °C to 150°C; (unless otherwise specified) | Parameter | Symbol | Values | | | Unit | Note or Test Condition | Number | |---|------------------------|--------|------|--------------|----------|---|----------| | | | Min. | Тур. | Max. | | | | | Current through DEN pin | I _{DEN} | -2 | - | 2 | mA | - | P_4.1.16 | | Sense Pin | 1 | | * | * | <u> </u> | <u>'</u> | 1 | | Voltage at IS pin | V_{IS} | -0.3 | - | V_{S} | V | - | P_4.1.19 | | Current through IS pin | I _{IS} | -25 | - | 50 | mA | - | P_4.1.20 | | Power Stage | | | | | | | | | Load current | I _L | - | - | $I_{L(LIM)}$ | А | - | P_4.1.21 | | Power dissipation (DC) | P _{TOT} | - | - | 1.8 | W | T _A = 85 °C
T _J < 150 °C | P_4.1.22 | | Maximum energy dissipation repetitive pulse (one channel) | E _{AR_2A} | - | - | 40 | mJ | 20 Mio. cycles $I_{L(0)} = 2 \text{ A}$ $T_{J(0)} = 105 ^{\circ}\text{C}$ | P_4.1.24 | | Negative voltage slope at output (inductive clamping) | -dV _{OUT} /dt | - | - | -20 | V/µs | $V_{OUT} = 28 V$
to $28 V - V_{DS(AZ)}$
$V_{IN} = 0 V$ | P_4.1.35 | | Positive voltage slope at output | dV _{OUT} /dt | - | - | 20 | V/µs | $V_{OUT} = 0 \text{ V to } 28 \text{ V}$
$V_{IN} = 0 \text{ V}$ | P_4.1.36 | | Voltage at power transistor | V_{DS} | - | - | 65 | V | - | P_4.1.26 | | Currents | | | | | · | | | | Current through ground pin | I _{GND} | -20 | - | 20 | mA | - | P_4.1.27 | | Current through ground pin | I _{GND} | -150 | - | 20 | mA | <i>t</i> < 2 min | P_4.1.7 | | Temperatures | | | | | | | | | Junction temperature | T_{J} | -40 | - | 150 | °C | - | P_4.1.28 | | Storage temperature | $T_{\rm STG}$ | -55 | - | 150 | °C | - | P_4.1.30 | | ESD Susceptibility | | | | | | | | | ESD susceptibility (all pins) | V_{ESD} | -2 | - | 2 | kV | ⁴⁾ HBM | P_4.1.31 | | ESD susceptibility OUT Pin vs. GND and V_S connected | V _{ESD} | -5 | - | 5 | kV | ⁴⁾ HBM | P_4.1.32 | | ESD susceptibility | V_{ESD} | -500 | - | 500 | V | ⁵⁾ CDM | P_4.1.33 | | ESD susceptibility pin (corner pins) | V _{ESD} | -750 | - | 750 | V | ⁵⁾ CDM | P_4.1.34 | - 1) Not subject to production test. Specified by design. - 2) VS(LD) is setup without the DUT connected to the generator per ISO 7637-1. - 3) Threshold limit for short circuit failures: 100 ppm. Please refer to the legal disclaimer for short-circuit capability at the end of this document. - 4) ESD susceptibility HBM according to ANSI/ESDA/JEDEC JS-001. - 5) "CDM" ESDA STM5.3.1 or ANSI/ESD 5.5.3.1 #### **General Product Characteristics** #### **Notes** - 1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. - 2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation. ## 4.2 Functional Range Table 4 Functional Range T_J = -40°C to 150°C; (unless otherwise specified) | Parameter | Symbol | | Value | s | Unit | Note or
Test Condition | Number | |---|----------------------|------|-------|------|------|--|----------| | | | Min. | Тур. | Max. | | | | | Nominal operating voltage | V_{NOM} | 8 | 28 | 36 | V | - | P_4.2.1 | | Extended operating voltage | $V_{S(OP)}$ | 5 | - | 48 | V | $V_{IN} = 4.5 \text{ V}$
$R_L = 25 \Omega$
$V_{DS} < 0.5 \text{ V}$ | P_4.2.2 | | Minimum functional supply
voltage | $V_{S(OP)_{-}MIN}$ | 3.8 | 4.3 | 5 | V | $^{2)}$ $V_{IN} = 4.5 \text{ V}$
$R_L = 25 \Omega$
From $I_{OUT} = 0 \text{ A}$
to
$V_{DS} < 0.5 \text{ V}$;
see Figure 16 | P_4.2.3 | | Undervoltage shutdown | $V_{S(UV)}$ | 3 | 3.5 | 4.1 | V | $^{2)}$ V_{IN} = 4.5 V
V_{DEN} = 0 V
R_{L} = 25 Ω
From V_{DS} < 1 V
to I_{OUT} = 0 A
See Figure 16 | P_4.2.4 | | Undervoltage shutdown
hysteresis | $V_{\rm S(UV)_HYS}$ | - | 850 | - | mV | 3) _ | P_4.2.13 | | Operating current
One channel active | I_{GND_1} | - | 5 | 7 | mA | $V_{IN} = 5.5 \text{ V}$
$V_{DEN} = 5.5 \text{ V}$
Device in $R_{DS(ON)}$
$V_S = 36 \text{ V}$ | P_4.2.5 | | Operating current
All channels active | I _{GND_2} | - | 8.3 | 12 | mA | $V_{IN} = 5.5 \text{ V}$
$V_{DEN} = 5.5 \text{ V}$
Device in $R_{DS(ON)}$
$V_S = 36 \text{ V}$ | P_4.2.6 | | Standby current for whole device with load (ambiente) | I _{S(OFF)} | - | 0.1 | 0.5 | μА | $^{2)}V_{S} = 36 \text{ V}$
$V_{OUT} = 0 \text{ V}$
$V_{IN} \text{ floating}$
$V_{DEN} \text{ floating}$
$T_{J} \le 85 \text{ °C}$ | P_4.2.7 | Table 4 Functional Range (cont'd)T_J = -40°C to 150°C; (unless otherwise specified) | Parameter | Symbol | Values | | | Unit | Note or | Number | |---|-------------------------|--------|------|------|------|--|----------| | | | Min. | Тур. | Max. | | Test Condition | | | Maximum standby current for whole device with load | I _{S(OFF)_150} | - | - | 10 | μА | $V_{\rm S} = 36 \text{ V}$
$V_{\rm OUT} = 0 \text{ V}$
$V_{\rm IN}$ floating
$V_{\rm DEN}$ floating
$T_{\rm J} = 150 ^{\circ}\text{C}$ | P_4.2.10 | | Standby current for whole device with load, diagnostic active | I _{S(OFF_DEN)} | - | 1.15 | - | mA | $^{3)}$ $V_{\rm S} = 36 \text{ V}$
$V_{\rm OUT} = 0 \text{ V}$
$V_{\rm IN}$ floating
$V_{\rm DEN} = 5.5 \text{ V}$ | P_4.2.8 | - 1) Parameter deviation possible: R_{DSON} , $I_{IS(FAULT)}$ & timing parameters. Protection functions are working. - 2) Test at $T_1 = -40$ °C only - 3) Not subject to production test. Specified by design. Note: Within the functional range the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the related electrical characteristics table. ## 4.3 Thermal Resistance Table 5 Thermal Resistance | Parameter | Symbol | Symbol Values | | | Unit | Note or | Number | |---|------------|---------------|------|------|------|----------------|---------| | | | Min. | Тур. | Max. | | Test Condition | | | Junction to soldering point | R_{thJS} | - | 3 | - | K/W | 1) | P_4.3.1 | | Junction to ambient All channels active | R_{thJA} | - | 29 | - | K/W | 1)2) | P_4.3.2 | - 1) Not subject to production test. Specified by design. - 2) Specified R_{thja} value is according to JEDEC JESD51-2,-5,-7 at natural convection on FR4 2s2p board; The product (chip + package) was simulated on a 76.4 x 114.3 x 1.5 mm board with 2 inner copper layers (2 x 70 μ m Cu, 2 x 35 μ m Cu). Where applicable, a thermal via array under the exposed pad contacts the first inner copper layer. Please refer to Figure 4. ## 4.3.1 PCB set up 12 Figure 4 2s2p PCB Cross Section Figure 5 1s0p PCB Cross Section Figure 6 PC Board Top and Bottom View for Thermal Simulation with 600 mm² Cooling Area ## 4.3.2 Thermal Impedance Figure 7 Typical Thermal Impedance. Both channels active. Ta=85°C. PCB set up according Figure 4 / Figure 5 Figure 8 Typical Thermal Resistance. Both channels active. Ta=85°C. PCB set-up 1s0p **Power Stage** ## 5 Power Stage The power stages are built using an N-channel vertical power MOSFET (DMOS) with charge pump. ## 5.1 Output ON-State Resistance The ON-state resistance $R_{\rm DS(ON)}$ depends on the supply voltage as well as the junction temperature $T_{\rm J}$. Figure 9 shows the dependencies in terms of temperature and supply voltage for the typical ON-state resistance. The behavior in reverse polarity is described in Chapter 6.4. Figure 9 Typical ON-state Resistance A high signal at the input pin (see **Chapter 8**) causes the power DMOS to switch ON with a dedicated slope, which is optimized in terms of EMC emission. ## 5.2 Turn ON/OFF Characteristics with Resistive Load Figure 10 shows the typical timing when switching a resistive load. Figure 10 Switching a Resistive Load Timing ## 5.3 Inductive Load ## 5.3.1 Output Clamping When switching OFF inductive loads with high side switches, the voltage $V_{\rm OUT}$ drops below ground potential, because the inductance intends to continue driving the current. To prevent the destruction of the device by avalanche due to high voltages, there is a voltage clamp mechanism $Z_{\rm DS(AZ)}$ implemented that limits negative output voltage to a certain level ($V_{\rm S}$ - $V_{\rm DS(AZ)}$). Please refer to **Figure 11** and **Figure 12** for details. Nevertheless, the maximum allowed load inductance is limited. Figure 11 Output Clamp Figure 12 Switching an Inductive Load Timing ## 5.3.2 Maximum Load Inductance During demagnetization of inductive loads, energy has to be dissipated in the BTF6070-2EKV. This energy can be calculated with following equation: $$E = V_{\mathrm{DS(AZ)}} \times \frac{L}{R_{\mathrm{L}}} \times \left[\frac{V_{\mathrm{S}} - V_{\mathrm{DS(AZ)}}}{R_{\mathrm{L}}} \times \ln\left(1 - \frac{R_{\mathrm{L}} \times I_{\mathrm{L}}}{V_{\mathrm{S}} - V_{\mathrm{DS(AZ)}}}\right) + I_{\mathrm{L}} \right]$$ (5.1) ## **Power Stage** Following equation simplifies under the assumption of $R_1 = 0 \Omega$. $$E = \frac{1}{2} \times L \times I^2 \times \left(1 - \frac{V_S}{V_S - V_{DS(AZ)}}\right)$$ (5.2) The energy, which is converted into heat, is limited by the thermal design of the component. See **Figure 13** for the maximum allowed energy dissipation as a function of the load current. Figure 13 Maximum Energy Dissipation Single Pulse, $T_{J \text{ START}} = 150 \,^{\circ}\text{C}$ ## 5.4 Inverse Current Capability In case of inverse current, meaning a voltage $V_{\rm INV}$ at the OUTput higher than the supply voltage $V_{\rm S}$, a current $I_{\rm INV}$ will flow from output to $V_{\rm S}$ pin via the body diode of the power transistor (please refer to **Figure 14**). The output stage follows the state of the IN pin, except if the IN pin goes from OFF to ON during inverse. In that particular case, the output stage is kept OFF until the inverse current disappears. Nevertheless, the current $I_{\rm INV}$ should not be higher than $I_{\rm L(INV)}$. $I_{\rm L(INV)}$ can be considered as 3 A. If the channel is OFF, the diagnostic will detect an open load at OFF. If the affected channel is ON, the diagnostic will detect open load at ON (the overtemperature signal is inhibited). At the appearance of $V_{\rm INV}$, a parasitic diagnostic can be observed. After, the diagnosis is valid and reflects the output state. At $V_{\rm INV}$ vanishing, the diagnosis is valid and reflects the output state. During inverse current, no protection functions are available. ## **Power Stage** Figure 14 Inverse Current Circuitry ## 5.5 Electrical Characteristics Power Stage ## Table 6 Electrical Characteristics: Power Stage $V_{\rm S}$ = 8 V to 36 V, $T_{\rm J}$ = -40°C to 150°C (unless otherwise specified). Typical values are given at $V_{\rm S}$ = 28 V, $T_{\rm J}$ = 25 °C | Parameter | Symbol | Values | | | Unit | Note or | Number | |--|-------------------------|--------|------|------|------|---|----------| | | | Min. | Тур. | Max. | | Test Condition | | | ON-state resistance per channel | R _{DS(ON)_150} | 90 | 120 | 135 | mΩ | $I_{L} = I_{L4} = 4 \text{ A}$ $V_{IN} = 4.5 \text{ V}$ $T_{J} = 150 \text{ °C}$ See Figure 9 | P_5.5.1 | | ON-state resistance per channel | R _{DS(ON)_25} | - | 60 | - | mΩ | ¹⁾ $T_J = 25 ^{\circ}\text{C}$ | P_5.5.21 | | Nominal load current
One channel active | I _{L(NOM)1} | - | 3 | - | А | ¹⁾ T _A = 85 °C
T _J < 150 °C | P_5.5.2 | | Nominal load current
All channels active | I _{L(NOM)2} | - | 2.3 | - | А | | P_5.5.3 | | Output voltage drop limitation at small load currents | $V_{DS(NL)}$ | - | 10 | 22 | mV | $I_{\rm L} = I_{\rm L0} = 50 \text{mA}$ | P_5.5.4 | | Drain to source clamping voltage $V_{ m DS(AZ)}$ = ($V_{ m S}$ - $V_{ m OUT}$) | $V_{DS(AZ)}$ | 65 | 70 | 75 | V | I _{DS} = 20 mA
See Figure 12 | P_5.5.5 | | Output leakage current per
channel <i>T</i> _J ≤ 85 °C | I _{L(OFF)} | - | 0.1 | 0.5 | μΑ | V_{IN} floating
$V_{\text{OUT}} = 0 \text{ V}$
$T_{\text{J}} \le 85^{\circ}\text{C}$ | P_5.5.6 | | Output leakage current per channel T_J = 150 °C | I _{L(OFF)_150} | - | 1 | 8 | μΑ | V_{IN} floating
$V_{OUT} = 0 \text{ V}$
$T_{J} = 150 ^{\circ}\text{C}$ | P_5.5.8 | ## **Power Stage** ## Table 6 Electrical Characteristics: Power Stage (cont'd) $V_{\rm S}$ = 8 V to 36 V, T_J = -40°C to 150°C (unless otherwise specified). Typical values are given at $V_{\rm S}$ = 28 V, $T_{\rm J}$ = 25 °C | Parameter | Symbol | | Value | S | Unit | Note or
Test Condition | Number | |--|------------------------|------|-------|------|------|---|----------| | | | Min. | Тур. | Max. | | | | | Slew rate 30% to 70% $V_{\rm S}$ | dV/dt_{ON} | 1 | 2.4 | 4.5 | V/µs | $R_L = 25 \Omega$
$V_S = 28 \text{ V}$ | P_5.5.11 | | Slew rate 70% to 30% V _S | -dV/dt _{OFF} | 1 | 2.4 | 4.5 | V/µs | See Figure 10 | P_5.5.12 | | Slew rate matching dV/dt_{ON} - dV/dt_{OFF} | ΔdV/dt | -0.5 | 0 | 0.5 | V/µs | | P_5.5.13 | | Turn-ON time to $V_{\text{OUT}} = 90\% V_{\text{S}}$ | t _{ON} | 5 | 28 | 70 | μs | | P_5.5.14 | | $\overline{\text{Turn-OFF time to } V_{\text{OUT}} = 10\% V_{\text{S}}}$ | t _{OFF} | 5 | 28 | 70 | μs | | P_5.5.15 | | Turn-ON / OFF matching t_{OFF} - t_{ON} | $\Delta t_{\sf SW}$ | -20 | 5 | 20 | μs | | P_5.5.16 | | Turn-ON time to $V_{\text{OUT}} = 10\% V_{\text{S}}$ | t _{ON_delay} | - | 17 | 40 | μs | | P_5.5.17 | | Turn-OFF time to $V_{\text{OUT}} = 90\% V_{\text{S}}$ | t _{OFF_delay} | - | 17 | 40 | μs | | P_5.5.18 | | Switch ON energy | E _{ON} | - | 115 | - | μЈ | $^{1)}$ R _L = 25 Ω
V _{OUT} = 90% V _S
V _S = 36 V | P_5.5.19 | | Switch OFF energy | E _{OFF} | - | 173 | - | μЈ | $^{1)} R_{L} = 25 \Omega$
$V_{OUT} = 10\% V_{S}$
$V_{S} = 36 V$ | P_5.5.20 | ¹⁾ Not subject to production test, specified by design. ²⁾ Test at $T_J = -40$ °C only #### 6 Protection Functions The device provides integrated protection functions. These functions are designed to prevent the destruction of the IC from fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are designed for neither continuous nor repetitive operation. #### 6.1 Loss of Ground Protection In case of loss of the module ground and the load remains connected to ground, the device protects itself by automatically turning OFF (when it was previously ON) or remains OFF, regardless of the voltage applied on IN pins. In case of loss of device ground, it's recommended to use input resistors between the microcontroller and the BTF6070-2EKV to ensure switching OFF of channels. In case of loss of module or device ground, a current $(I_{OUT(GND)})$ can flow out of the DMOS. Figure 15 sketches the situation. $Z_{\sf GND}$ is recommended to be a resistor in series to a diode. Figure 15 Loss of Ground Protection with External Components ## 6.2 Undervoltage Protection Between $V_{S(UV)}$ and $V_{S(OP)}$, the undervoltage mechanism is triggered. $V_{S(OP)}$ represents the minimum voltage where the switching ON and OFF can takes place. $V_{S(UV)}$ represents the minimum voltage the switch can hold ON. If the supply voltage is below the undervoltage mechanism $V_{S(UV)}$, the device is OFF (turns OFF). As soon as the supply voltage is above the undervoltage mechanism $V_{S(OP)}$, then the device can be switched ON. When the switch is ON, protection functions are operational. Nevertheless, the diagnosis is not guaranteed until V_S is in the V_{NOM} range. Figure 16 sketches the undervoltage mechanism. Figure 16 Undervoltage Behavior ## 6.3 Overvoltage Protection There is an integrated clamp mechanism for overvoltage protection $(Z_{D(AZ)})$. To guarantee this mechanism operates properly in the application, the current in the Zener diode has to be limited by a ground resistor. Figure 17 shows a typical application to withstand overvoltage issues. In case of supply voltage higher than $V_{S(AZ)}$, the power transistor switches ON and in addition the voltage across the logic section is clamped. As a result, the internal ground potential rises to $V_S - V_{S(AZ)}$. Due to the ESD Zener diodes, the potential at pin INx and DEN rises almost to that potential, depending on the impedance of the connected circuitry. In the case the device was ON, prior to overvoltage, the BTF6070-2EKV remains ON. In the case the BTF6070-2EKV was OFF, prior to overvoltage, the power transistor can be activated. In the case the supply voltage is in above $V_{BAT(SC)}$ and below $V_{DS(AZ)}$, the output transistor is still operational and follows the input. If at least one channel is in the ON state, parameters are no longer guaranteed and lifetime is reduced compared to the nominal supply voltage range. This especially impacts the short circuit robustness, as well as the maximum energy E_{AS} capability. The values for $Z_{IS(A)}$, $Z_{D(A)}$ and $Z_{DS(A)}$ are included in the parameter $P_{-}6.6.3$. Z_{GND} is recommended to be a resistor in series to a diode. Figure 17 Overvoltage Protection with External Components ## 6.4 Reverse Polarity Protection In case of reverse polarity, the intrinsic body diodes of the power DMOS causes power dissipation. The current in this intrinsic body diode is limited by the load itself. Additionally, the current into the ground path and the logic pins has to be limited to the maximum current described in **Chapter 4.1** with an external resistor. **Figure 18** shows a typical application. R_{GND} resistor is used to limit the current in the Zener protection of the device. Resistors R_{DEN} , and R_{IN} are used to limit the current in the logic of the device and in the ESD protection stage. R_{SENSE} is used to limit the current in the sense transistor which behaves as a diode. The recommended value for $R_{\text{DEN}} = R_{\text{IN}} = 10 \text{ k}\Omega$. Z_{GND} is recommended to be a resistor in series to a diode. During reverse polarity, no protection functions are available. Figure 18 Reverse Polarity Protection with External Components ## 6.5 Overload Protection In case of overload, such as high inrush of cold lamp filament, or short circuit to ground, the BTF6070-2EKV offers several protection mechanisms. #### 6.5.1 Current Limitation At first step, the instantaneous power in the switch is maintained at a safe value by limiting the current to the maximum current allowed in the switch $I_{L(SC)}$. During this time, the DMOS temperature is increasing, which affects the current flowing in the DMOS. ## 6.5.2 Temperature Limitation in the Power DMOS Each channel incorporates both an absolute $(T_{J(SC)})$ and a dynamic $(T_{J(SW)})$ temperature sensor. Activation of either sensor will cause an overheated channel to switch OFF to prevent destruction. Any protective switch OFF latches the output until the temperature has reached an acceptable value. Figure 19 gives a sketch of the situation. No retry strategy is implemented such that when the DMOS temperature has cooled down enough, the switch is switched ON again. Only the IN pin signal toggling can re-activate the power stage (latch behavior). # infineon #### **Protection Functions** Figure 19 Overload Protection Note: For better understanding, the time scale is not linear. The real timing of this drawing is application dependant and cannot be described. ## 6.6 Electrical Characteristics for the Protection Functions ## Table 7 Electrical Characteristics: Protection V_S = 8 V to 36 V, T_A = -40°C to 150°C (unless otherwise specified). Typical values are given at $V_S = 28 \text{ V}$, $T_J = 25 \text{ }^{\circ}\text{C}$ | Parameter | Symbol | Values | | | Unit | Note or | Number | |--|-----------------------|--------|--------|--------|------|---|----------| | | | Min. | Тур. | Max. | | Test Condition | | | Loss of Ground | | | | | | | " | | Output leakage current while GND disconnected | I _{OUT(GND)} | - | 0.1 | - | μΑ | ¹⁾²⁾ V _S = 45 V
See Figure 15 | P_6.6.1 | | Reverse Polarity | | | | | | | " | | Drain source diode voltage during reverse polarity | V _{DS(REV)} | 400 | 650 | 700 | mV | $I_L = -2 \text{ A}$
$T_J = 150 ^{\circ}\text{C}$
See Figure 18 | P_6.6.2 | | Overvoltage | | | | | • | | | | Overvoltage protection | $V_{S(AZ)}$ | 65 | 70 | 75 | V | I _{SOV} = 5 mA
See Figure 17 | P_6.6.3 | | Overload Condition | 1 | | 1 | | | | | | Load current limitation | I _{L5(SC)} | 9 | 11 | 14 | А | 3) V _{DS} = 10 V
See Figure 19 | P_6.6.4 | | Dynamic temperature increase while switching | $\Delta T_{J(SW)}$ | - | 80 | - | K | ^{4) 3)} See Figure 19 | P_6.6.8 | | Thermal shutdown
temperature | $T_{J(SC)}$ | 150 | 170 4) | 200 4) | °C | 5) See Figure 19 | P_6.6.10 | | Thermal shutdown hysteresis | $\Delta T_{J(SC)}$ | - | 30 | - | K | ²⁾ See Figure 19 | P_6.6.11 | 24 ¹⁾ All pins are disconnected except V_S and OUT. ²⁾ Not Subject to production test, specified by design ³⁾ Test at $T_J = -40^{\circ}$ C only ⁴⁾ Functional test only ⁵⁾ Test at $T_J = +150$ °C only ## **Diagnostic Functions** ## 7 Diagnostic Functions For diagnosis purpose, the BTF6070-2EKV provides a combination of digital and analog signals at the IS Pins (ISO and IS1). These signals are called SENSE. In case the diagnostic is disabled via DEN, pins IS become high impedance. In case DEN is activated, the sense current of both channels is enabled. **Table 8** gives the truth table. Table 8 Diagnostic Truth Table | DEN | ISO | IS1 | |-----|-----------------------|-----------------------| | 0 | Z | Z | | 1 | Sense output 0 IIS(0) | Sense output 1 IIS(1) | #### 7.1 IS Pins The BTF6070-2EKV provides a sense signal called $I_{\rm IS}$ at pins ISx. As long as no "hard" failure mode occurs (short circuit to GND / current limitation / overtemperature / excessive dynamic temperature increase or open load at OFF) a proportional signal to the load current (ratio $k_{\rm ILIS} = I_{\rm L}/I_{\rm IS}$) is provided. The complete IS pins and diagnostic mechanism is described on Figure 20. The accuracy of the sense current depends on temperature and load current. Due to the ESD protection, in connection to $V_{\rm S}$, it is not recommended to share the IS pins with other devices if these devices are using another battery feed. The consequence is that the unsupplied device would be fed via the IS pin of the supplied device. Figure 20 Diagnostic Block Diagram