imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

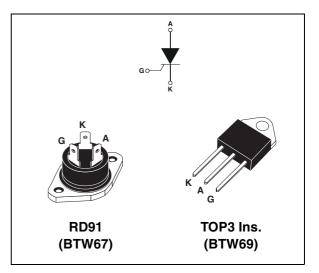
BTW67 and BTW69 Series

STANDARD

50A SCRs

Table 1: Main Features

Symbol	Value	Unit
I _{T(RMS)}	50	А
V _{DRM} /V _{RRM}	600 to 1200	V
I _{GT}	80	mA


DESCRIPTION

Available in high power packages, the **BTW67** / **BTW69** Series is suitable in applications where power handling and power dissipation are critical, such as solid state relays, welding equipment, high power motor control.

Based on a clip assembly technology, they offer a superior performance in surge current handling capabilities.

Thanks to their internal ceramic pad, they provide high voltage insulation ($2500V_{RMS}$), complying with UL standards (file ref: E81734).

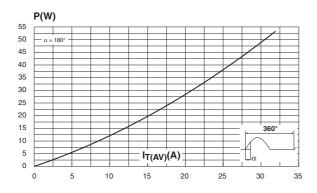
Table 3: Absol	ute Ratings	(limiting values)
----------------	-------------	-------------------

Table 2: Order Codes

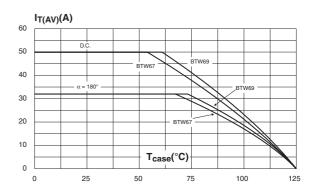
Part Numbers	Marking
BTW67-xxx	BTW67xxx
BTW69-xxxRG	BTW69xxx

Symbol	Parameter			Value	Unit	
I	RMS on-state current	RD91		50	•	
I _{T(RMS)}	(180° conduction angle)	TOP3 Ins.	T _c = 75°C	50	A	
IT	Average on-state current	RD91	$T_c = 70^{\circ}C$	22	А	
IT _(AV)	(180° conduction angle)	TOP3 Ins.	$T_c = 75^{\circ}C$	32		
	Non ropotitivo ourgo pook on ototo ourropt	t _p = 8.3 ms	T _i = 25°C	610	А	
I _{TSM}	Non repetitive surge peak on-state current	t _p = 10 ms	1j = 25 0	580		
l²t	$I^{2}t$ Value for fusing $T_{j} = 25^{\circ}C$		1680	A ² s		
dl/dt	$\left \begin{array}{c} \mbox{Critical rate of rise of on-state current } I_G = 2 \\ x \ I_{GT} \ , \ t_r \leq 100 \ ns \end{array} \right \ F = 60 \ Hz \left \begin{array}{c} \ T_j \end{array} \right $		$T_j = 125^{\circ}C$	50	A/µs	
I _{GM}	Peak gate current $t_p = 20 \ \mu s$ $T_j = 125^{\circ}C$		8	А		
$P_{G(AV)}$	Average gate power dissipation $T_j = 125^{\circ}C$			1	W	
T _{stg} T _j	Storage junction temperature range Operating junction temperature range			- 40 to + 150 - 40 to + 125	°C	
V _{RGM}	Maximum peak reverse gate voltage			5	V	

BTW67 and BTW69 Series


Symbol	Test Conditions			Value	Unit
lot			MIN.	8	mA
I _{GT}	$V_D = 12 V$ $R_L = 33 \Omega$		MAX.	80	
V _{GT}			MAX.	1.3	V
V_{GD}	$V_D = V_{DRM}$ $R_L = 3.3 \text{ k}\Omega$	T _j = 125°C	MIN.	0.2	V
Ι _Η	I _T = 500 mA Gate open		MAX.	150	mA
١L	$I_{G} = 1.2 \times I_{GT}$		MAX.	200	mA
dV/dt	V _D = 67 % V _{DRM} Gate open	T _j = 125°C	MIN.	1000	V/µs
V_{TM}	I _{TM} = 100 A tp = 380 μs	T _j = 25°C	MAX.	1.9	V
V _{t0}	Threshold voltage $T_j = 125^{\circ}C$		MAX.	1.0	V
R _d	Dynamic resistance $T_j = 125^{\circ}C$		MAX.	8.5	mΩ
I _{DRM}	V _{DBM} = V _{BBM}	T _j = 25°C	MAX.	10	μA
I _{RRM}		T _j = 125°C		5	mA

Tables 4: Electrical Characteristics ($T_j = 25^{\circ}C$, unless otherwise specified)


Table 5: Thermal resistance

Symbol	Parameter		Value	Unit
Bunn	lunction to page (D.C.)	RD91 (Insulated)	1.0	°C/W
R _{th(j-c)}	Junction to case (D.C.)	TOP3 Insulated	0.9	- 0/10
R _{th(j-a)}	Junction to ambient (D.C.)	TOP3 Insulated	50	°C/W

Figure 1: Maximum average power dissipation versus average on-state current

Figure 2: Average and D.C. on-state current versus case temperature

51

Figure 3: Relative variation of thermal impedance versus pulse duration

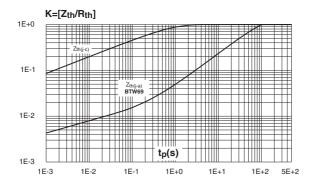


Figure 5: Surge peak on-state current versus number of cycles

Figure 4: Relative variation of gate trigger current, holding current and latching current versus junction temperature

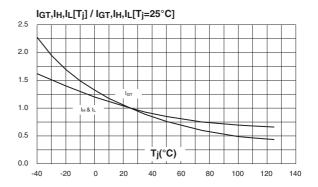
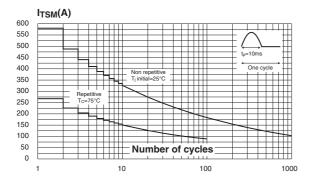
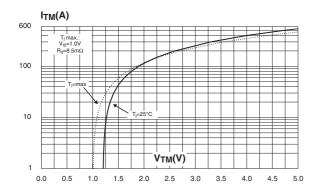
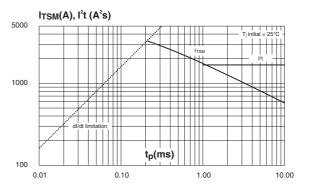
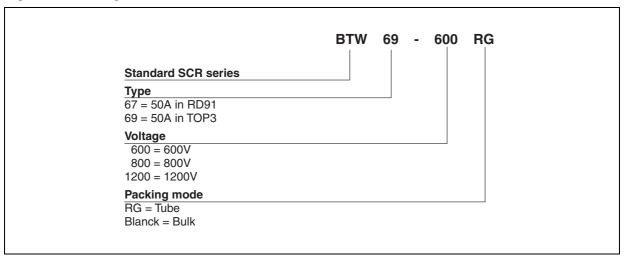


Figure 6: Non-repetitive surge peak on-state current for a sinusoidal pulse with width tp < 10 ms, and corresponding values of l²t


Figure 7: On-state characteristics (maximum values)

[]

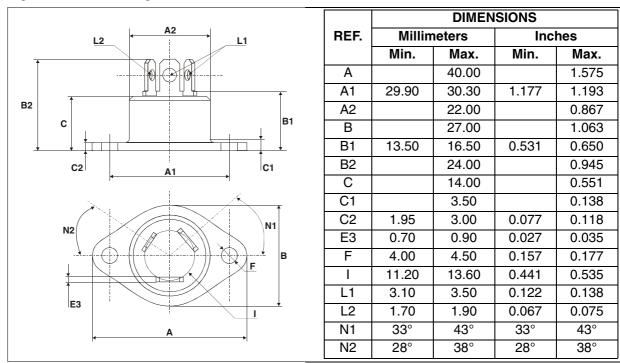

Figure 8: Ordering Information Scheme

Table 6: Product Selector

Part Numbers	Voltage (x			Sensitivity	Package	
Fait Numbers	600 V	800 V	1200 V	Sensitivity	Fackage	
BTW67-xxx	Х	Х	Х	80 mA	RD91	
BTW69-xxx	Х	Х	Х	80 mA	TOP3 Ins.	

Figure 9: RD91 Package Mechanical Data

<u>ک</u>

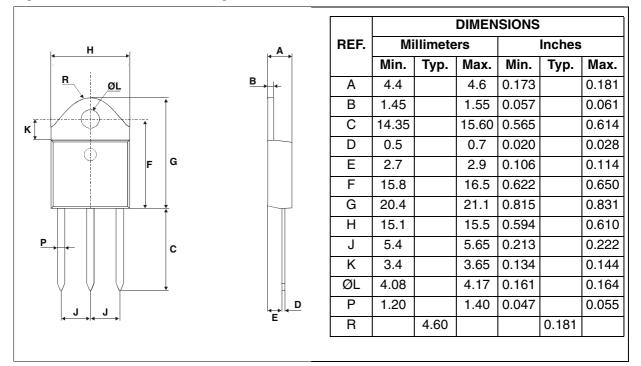


Figure 10: TOP3 Insulated Package Mechanical Data

In order to meet environmental requirements, ST offers these devices in ECOPACK® packages. These packages have a Lead-free second level interconnect. The category of second level interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: <u>www.st.com</u>.

Table 7: Ordering Information

Ordering type	Marking	Package	Weight	Base qty	Delivery mode
BTW67-xxx	BTW67xxx	RD91	20 g	25	Bulk
BTW69-xxxRG	BTW69xxx	TOP3 Ins.	4.5 g	30	Tube

Note: xxx = voltage

Table 8: Revision History

Date	Revision	Description of Changes
Apr-2001	4A	Last update.
13-Feb-2006	5	TOP3 Insulated delivery mode changed from bulk to tube. ECOPACK statement added.

57

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners

© 2006 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

57