: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

12-bit, serial IN, parallel OUT driver BU2090 / BU2090F / BU2090FS / BU2092 / BU2092F / BU2092FV

The BU2090, BU2090F, BU2090FS, BU2092, BU2092F, and BU2092FV are 12-bit serial input, parallel output drivers.
For the BU2090 / F / FS, data input is shifted to the 12-bit internal shift register on the rising edge of a clock pulse. On the falling edge of the pulse, if the DATA pin is HIGH, the data in the shift register is output in parallel to Q0 to Q11.
For the BU2092 / F / FV, shift data read at the rising edge of CLOCK is output in parallel to Q0 to Q11 at the rising edge of LCK. These ICs also have an OE pin, which when HIGH, forces data to be output, regardless of the shift data state.

- Applications

Radio cassette players, telephones, compact audio systems, car stereos, and others

-Features

1) Low power dissipation.
2) Operating voltages ranging from 2.7 to 5.5 V .
3) Output is Nch open drain.
4) High output withstand voltage of +25 V .
5) Diverse variety of packages.

BU2090 / F / FS: DIP16, SOP16, SSOP-A16
BU2092 / F / FV: DIP18, SOP18, SSOP-A18
(plastic molds)
6) High drive capability; direct lighting of green LED possible.

- Absolute maximum ratings ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)
(BU2090 / F / FS, BU2092 / F / FV)

Parameter		Symbol	Limits	Unit
Power supply voltage		VdD	$-0.3 \sim+7.0$	V
Power dissipation	BU2090 / F / FS	Pd	1000 (DIP), 300 (SOP), 500 (SSOP)*1	mW
	BU2092 / F / FV		1050 (DIP), 450 (SOP), 400 (SSOP)*1	
Power dissipation	BU2090 / F / FS	Pd	500 (SOP)*2, 650 (SSOP)*3	mW
	BU2092 / F / FV		500 (SOP)*2, 650 (SSOP)*4	
Operating temperature		Topr	$-25 \sim+75$	${ }^{\circ} \mathrm{C}$
Storage temperature		Tstg	$-55 \sim+125$	${ }^{\circ} \mathrm{C}$
Input voltage		VIN	$V_{S S}-0.3 \sim V_{\text {dD }}+0.3$	V
Output voltage		Vo	Vss ~ 25.0	V

*1 Unmounted
*2 When mounted on a glass epoxy board of $50 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$
$* 3$ When mounted on a glass epoxy board of $90 \mathrm{~mm} \times 50 \mathrm{~mm} \times 1.6 \mathrm{~mm}$
$* 4$ When mounted on a glass epoxy board of $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$

- Recommended operating conditions

Parameter	Symbol	Limits	Unit
Power supply voltage	V_{DD}	$2.7 \sim 5.5$	V

- Block diagram

BU2092 / F

BU2092FV

- Pin descriptions

Pin No.			Fin name	Function
BU2090 / F / FS	BU2092 /	BU2092 / FV		
1	1	1	Vss	GND
2	2	2	DATA	Serial data input
3	3	3	CLOCK	Data shift clock input
-	4	4	LCK	Data latch clock input
4	5	5	Q0	Parallel data output
5	6	6	Q1	Parallel data output
6	7	7	Q2	Parallel data output
7	8	8	Q3	Parallel data output
8	9	9	Q4	Parallel data output
9	10	10	Q5	Parallel data output
10	11	11	Q6	Parallel data output
-	-	12	N.C.	Not connected
-	-	13	N.C.	Not connected
11	12	14	Q7	Parallel data output
12	13	15	Q8	Parallel data output
13	14	16	Q9	Parallel data output
14	15	17	Q10	Parallel data output
15	16	18	Q11	Parallel data output
-	17	19	OE	Output Enable
16	18	20	VDD	Power supply

- Electrical characteristics ($\mathrm{Ta}=25^{\circ} \mathrm{C}$)

DC characteristics (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}$, $\mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	Vod	Conditions
		3.5	-	-		5	
Input high level volage		2.5	-	-		3	
		-	-	1.5		5	
		-	-	0.4		3	
		-	-	2.0		5	$\mathrm{loL}=20 \mathrm{~mA}$
Ouput low levervotage	VoL	-	-	1.0		3	$\mathrm{loL}=5 \mathrm{~mA}$
"H" output disable current	lozh	-	-	10.0	$\mu \mathrm{A}$	5	V o $=25.0 \mathrm{~V}$
"L" output disable current	lozl	-	-	-5.0	$\mu \mathrm{A}$	5	V o $=0 \mathrm{~V}$
Current dissipation	IDD	-	-	5.0	$\mu \mathrm{A}$	5	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {Ss }}$ or V $\mathrm{V}_{\text {d }}$
		-	-	3.0		3	OUTPUT: OPEN

BU2090 / F / FS switching characteristics (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	V DD	Conditions
Minimum clock pulse width	tw	500	-	-	ns	5	-
		1000	-	-		3	
Data shift setup time	tsu	200	-	-	ns	5	-
		300	-	-		3	
Data shift hold time	t	200	-	-	ns	5	-
		400	-	-		3	
Data latch setup time	tısuH	50	-	-	ns	5	-
		100	-	-		3	
Data latch hold time	tıнн	250	-	-	ns	5	-
		500	-	-		3	
Data latch "L" setup time	tısul	200	-	-	ns	5	-
		400	-	-		3	
Data latch "L" hold time	tıHL	250	-	-	ns	5	-
		500	-	-		3	

ONot designed for radiation resistance.
BU2090 / F / FS switching characteristics measurement conditions

CLOCK

DATA

Fig. 1

BU2092 / F / FV switching characteristics (unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vss}=0 \mathrm{~V}$)

Parameter	Symbol	Min.	Typ.	Max.	Unit	$V_{D D}$	Conditions
Transmission delay time (LCK to OUTPUT QX)	tplz (LCK)	-	55	-	ns	5	$\begin{aligned} & \mathrm{RL}=5 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \end{aligned}$
		-	90	-		3	
	tpzl (LCK)	-	50	-	ns	5	$\begin{aligned} & \mathrm{RL}=5 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \end{aligned}$
		-	115	-		3	
Output disable time (OE to OUTPUT QX)	tplz	-	45	-	ns	5	$\begin{aligned} & \mathrm{RL}=5 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \end{aligned}$
		-	70	-		3	
	tpzL	-	35	-	ns	5	$\begin{aligned} & \mathrm{RL}=5 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \end{aligned}$
		-	80	-		3	
Minimum clock pulse width	tw	500	-	-	ns	5	-
		1000	-	-		3	
Minimum latch pulse width	tw (LCK)	500	-	-	ns	5	-
		1000	-	-		3	
Setup time (LCK to CLOCK)	ts	200	-	-	ns	5	-
		400	-	-		3	
Setup time (DATA to CLOCK)	tsu	200	-	-	ns	5	-
		400	-	-		3	
Hold time (CLOCK to DATA)	t	200	-	-	ns	5	-
		400	-	-		3	

O Not designed for radiation resistance.

BU2092 / F / FV switching characteristics measurement conditions

Fig. 2

- Truth table

BU2092 / F / FV

INPUT				FUNCTION
CLOCK	DATA	LCK	OE	
\times	\times	\times	H	Output (Q0 to Q11) disabled
\times	\times	\times	L	Output (Q0 to Q11) enabled
\pm	L	\times	\times	First cell of the shift register stores the LOW. Other cells, respectively, store data from the preceding cells or other prior data. (Output state is HOLD.)
\uparrow	H	\times	\times	First cell of the shift register stores the HIGH. Other cells, respectively, store data from the preceding cells or other prior data. (Storage state and output state are HOLD.)
7	\times	\times	\times	No change in shift register.
\times	\times	\pm	\times	Contents of shift register are stored in storage register.
\times	\times	7	\times	No change in shift register.

Q0 to Q11 output for the BU2090 / F / FS and BU2092 / F / FV is Nch open drain output. When the shift register transfer data is LOW, the corresponding output FET is ON (continuous state). When the transfer data is HIGH, the output FET is OFF (discontinuous).

Input / output circuit

BU2090 / F / FS		BU2092 / F		BU2092FV		BU2090 / F / FS		BU2092 / F		BU2092FV	
Pin No.	2, 3	Pin No.	2, 3, 4, 17	Pin No.	2, 3, 4, 19	Pin No.	$\begin{aligned} & 4,5,6,7,8,9 \\ & 10,11,12,13 \\ & 14,15 \end{aligned}$	Pin No.	$\begin{aligned} & 5,6,7,8,9 \\ & 10,11,12,13 \\ & 14,15,16 \end{aligned}$	Pin No.	$\begin{aligned} & 5,6,7,8,9, \\ & 10,11,14,15 \\ & 16,17,18 \end{aligned}$

- Circuit operation

The logic of the DATA pin is sent to the 12-bit shift register on the rising edge of the CLOCK pulse. Subsequently, it is shifted from Q0 to Q11 for every clock rising edge.

For the BU2090 / F / FS
When the DATA pin is LOW on the CLOCK falling edge, the data does not change its output state. It is only shifted in the internal shift register. However, when the DATA pin is HIGH, the content of the 12-bit shift register is latched and is output to the corresponding Q0 to Q11.

Fig. 3 Operation timing chart

For the BU2092 / F / FV

The content of the 12 -bit shift register is stored in the 12-bit storage register at the rising edge of LCK, and is output to the corresponding Q0 to Q11. When OE is HIGH, regardless of the content of the storage register, the output FET turns OFF and enters a HIGH (discontinuous) state.

Fig. 4 Operation timing chart

- Application example

BU2090 / F / FS

Fig. 5

BU2092 / F / (FV)

Fig. 6

- Electrical characteristic curves

Fig. 7 BU2090 / F / FS thermal derating characteristics

Fig. 8 BU2092 / F / FV thermal derating characteristics

Fig. 9 Output current vs.output low level voltage

- External dimensions (Units: mm)

BU2090

DIP16
BU2090F

| $\square \quad 0.15$ |
| :--- | :--- |

SOP16
BU2090FS

SSOP-A16

BU2092

DIP18
BU2092F

BU2092FV

SSOP-B20

Notes

No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.

- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.

Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.
In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.

