# imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





Capacitive Controller ICs Capacitive Switch Controller ICs

BU21072MUV / BU21078MUV / BU21078FV

# **General Description**

BU21072MUV/BU21078MUV/BU21078FV is a capacitive sensor controller for switch operation. In addition to a regular simple switch, support matrix switches which are arranged in the matrix sensors. If external noise and temperature drift are detected, the automatic self-calibration is operated. Include LED controller with PWM function.

#### Features

- 10 capacitive sensor ports. (BU21072MUV)
   12 capacitive sensor ports. (BU21078MUV / BU21078FV)
- Supported Matrix switches. Maximum 16 switches. (BU21072MUV)
   Maximum 36 switches. (BU21078MUV / BU21078FV)
- Automatic self-calibration.
- Continued touch detection.
- LED controller with PWM function.
- Inform the detected result of switch operation by interrupt.
- 2-wire serial bus interface.
- Single power supply.
- Built-in Power-On-Reset and Oscillator.

#### Applications

- Appliance that require multiple switches.
- Information appliance as printer.
- AV appliance as digital TV and HDD recorder.
- Notebook PC.

# **Typical Application Circuit**

#### Key Specifications

- Input voltage range
  Operating temperature range
  3.0 to 5.5V
  Operating temperature range
  -20 to 85°C
  - Operating current 3.5mA (Typ.)
  - Scan rate
    - 16msec (Typ.)

#### Packages

- BU21072MUV : VQFN024V4040
- BU21078MUV : VQFN028V5050
- BU21078FV : SSOP-B28





4.00 mm×4.00 mm×1.00 mm

5.00 mm×5.00 mm×1.00 mm

10.00 mm×7.60 mm×1.35 mm

VQFN028V5050





SSOP-B28



Figure 1. Typical Application Circuit

OProduct structure : Silicon monolithic integrated circuit OThis product is not designed protection against radioactive rays

#### OVERVIEW

BU21072MUV/BU21078MUV/BU21078FV is a capacitive sensor controller for switch operation.

Included blocks are AFE (Analog Front End) detecting capacitance, A/D converter, MPU, LED ports with PWM function, 2-wire serial bus interface compatible with I2C protocol, power-on-reset, oscillator. Operate with a 3.0 to 5.5V single power supply.

The results that detected switch operations (Touch/Release/Hold) are held to each register. An interrupt is send from INT port to the host when a register is updated by detected operations. If external noise and temperature drift are detected, run automatic self-calibration. Without periodic polling, offer the reduction of the host load.

LED ports are able to be applied PWM function. PWM function offers fade-in / fade-out brightness control.

#### Simple switch

One sensor is assigned to one switch. Each simple switch has the registers of detected Touch/Release/Hold operations. Simple switches support to multi-detect Touch/Release/Hold. Unused simple switches are maskable.

#### Matrix switches

The cross points of the sensors which are arranged in a matrix are able to assigned to individual switches. Each matrix switch has the registers of detected Touch/Release/Hold operations. Matrix switches do not support to multi-detect Touch/Release/Hold. Not used matrix switches are maskable. BU21072MUV supports 16 matrix switches configured by 4x4 sensors, and BU21078MUV / BU21078FV supports 36 matrix switches configured by 6x6 sensors.

#### Automatic self-calibration

BU21072MUV/BU21078MUV/BU21078FV has observed the situation surrounding the sensor based on the detection result. If external noise and temperature drift are detected, the automatic self-calibration is operated for the stable detection result.

#### LED controller with PWM timers

LED controller is High active. Each LED port is assigned to a choice of four PWM timers. If the situation surrounding the sensor is changed by the switching LED, it is useable that calibration is operated by sending LED control command.

Host interface

BU21072MUV/BU21078MUV/BU21078FV is slave device for the host device. 2-wire serial bus is compatible with I2C protocol.

Slave Address : 0x5C(BU21072MUV) , 0x5D(BU21078MUV / BU21078FV)

# **Pin Configurations**



# **Pin Descriptions**

|            | Number     |           | NI    | <b>T</b> | E sultas                      | N. C.                         | D     | Initial   | 1/0                     |
|------------|------------|-----------|-------|----------|-------------------------------|-------------------------------|-------|-----------|-------------------------|
| BU21072MUV | BU21078MUV | BU21078FV | Name  | туре     | Function                      | Note                          | Power | Condition | Equivalence<br>Circuits |
| -          | 1          | 11        | SIN12 | Ain      | Capacitive Touch Sensor12     |                               | AVDD  | Hi-Z      | Fig.5                   |
| 2          | 2          | 12        | SIN2  | Ain      | Capacitive Touch Sensor2      |                               | AVDD  | Hi-Z      | Fig.5                   |
| -          | 3          | 13        | SIN11 | Ain      | Capacitive Touch Sensor11     |                               | AVDD  | Hi-Z      | Fig.5                   |
| 3          | 4          | 14        | SIN1  | Ain      | Capacitive Touch Sensor1      |                               | AVDD  | Hi-Z      | Fig.5                   |
| 4          | 5          | 15        | SIN0  | Ain      | Capacitive Touch Sensor0      |                               | AVDD  | Hi-Z      | Fig.5                   |
| 5          | 6          | 16        | AVDD  | Power    | LDO output for analog blocks  |                               | VDD   | -         | -                       |
| 6          | 7          | 17        | VDD   | Power    | Power                         |                               | -     | -         | -                       |
| 7          | 8          | 18        | DVDD  | Power    | LDO output for digital blocks |                               | VDD   | -         | -                       |
| 8          | 9          | 19        | VSS   | GND      | Ground                        |                               | -     | -         | -                       |
| 9          | 10         | 20        | TEST  | In       | Test input                    | Please connect to Ground leve | VDD   | -         | Fig.6                   |
| 10         | 11         | 21        | SCL   | InOut    | Host I/F clock input          |                               | VDD   | Hi-Z      | Fig.6                   |
| 11         | 12         | 22        | SDA   | InOut    | Bi-directional Host I/F Data  |                               | VDD   | Hi-Z      | Fig.6                   |
| 12         | 13         | 23        | INT   | Out      | Interrupt output              | Active High Interrupt         | VDD   | "L"       | Fig.7                   |
| 13         | 14         | 24        | LED0  | Out      | LED control with PWM output0  | Active High                   | VDD   | Hi-Z      | Fig.7                   |
| 14         | 15         | 25        | LED1  | Out      | LED control with PWM output1  | Active High                   | VDD   | Hi-Z      | Fig.7                   |
| 15         | 16         | 26        | LED2  | Out      | LED control with PWM output2  | Active High                   | VDD   | Hi-Z      | Fig.7                   |
| 16         | 17         | 27        | LED3  | Out      | LED control with PWM output3  | Active High                   | VDD   | Hi-Z      | Fig.7                   |
| 17         | 18         | 28        | LED4  | Out      | LED control with PWM output4  | Active High                   | VDD   | Hi-Z      | Fig.7                   |
| 18         | 19         | 1         | LED5  | Out      | LED control with PWM output5  | Active High                   | VDD   | Hi-Z      | Fig.7                   |
| -          | 20         | 2         | LED6  | Out      | LED control with PWM output6  | Active High                   | VDD   | "L"       | Fig.7                   |
| -          | 21         | 3         | LED7  | Out      | LED control with PWM output7  | Active High                   | VDD   | "L"       | Fig.7                   |
| 19         | -          | -         | SIN9  | Ain      | Capacitive Touch Sensor9      |                               | AVDD  | Hi-Z      | Fig.5                   |
| 20         | -          | -         | SIN8  | Ain      | Capacitive Touch Sensor8      |                               | AVDD  | Hi-Z      | Fig.5                   |
| 21         | 22         | 4         | SIN7  | Ain      | Capacitive Touch Sensor7      |                               | AVDD  | Hi-Z      | Fig.5                   |
| 22         | 23         | 5         | SIN6  | Ain      | Capacitive Touch Sensor6      |                               | AVDD  | Hi-Z      | Fig.5                   |
| -          | 24         | 6         | SIN13 | Ain      | Capacitive Touch Sensor13     |                               | AVDD  | Hi-Z      | Fig.5                   |
| 23         | 25         | 7         | SIN5  | Ain      | Capacitive Touch Sensor5      |                               | AVDD  | Hi-Z      | Fig.5                   |
| -          | 26         | 8         | SIN14 | Ain      | Capacitive Touch Sensor14     |                               | AVDD  | Hi-Z      | Fig.5                   |
| 24         | 27         | 9         | SIN4  | Ain      | Capacitive Touch Sensor4      |                               | AVDD  | Hi-Z      | Fig.5                   |
| 1          | 28         | 10        | SIN3  | Ain      | Capacitive Touch Sensor3      |                               | AVDD  | Hi-Z      | Fig.5                   |

Initial Condition is at that power-on-reset is active.

# I/O Equivalence Circuits



Figure 5. I/O equivalence circuit (a)



Figure 6. I/O equivalence circuit (b)





# **Block Diagram**



Figure 8. Block Diagram

# **Description of Blocks**

Sensor AFE, C/V Converter

Convert from capacitance to voltage following the order of sensors.

A/D

Convert from voltage to the detected result the digital value.

LDO28

2.73V output LDO for Sensor AFE, C/V Converter and A/D.

LDO15

1.5V output LDO for OSC and digital blocks. OSC

Ring oscillator as the system clock.

POR

Power-On-Reset monitoring VDD as the system reset.

MPU.

Based on the detection result, detect switch operations (Touch/Release/Hold) and run Auto-calibration. Inform by the INT port to the host about that the switch operations are detected. LED ports are controlled by the commands from the host.

PROM

Program ROM for the included MPU.

WRAM

Work RAM for the included MPU.

HOST I/F 2-wire serial bus interface compatible with I2C protocol.

AFE CNT

Sequencer of Sensor AFE, C/V converter and A/D.

PWM\_CNT

PWM timers for the LED ports.

LEDDRV

LED port drivers.

WDTR

Watchdog Timer Reset. It releases the system reset after 1 sec from that MPU cannot clear WDTR. (If MPU cannot clear WDTR, MPU is hang-up.)

# Absolute Maximum Ratings (Ta = 25°C)

| Param                | eter       | Symbol            | Rating            | Unit |
|----------------------|------------|-------------------|-------------------|------|
| Power supply voltage | ;          | VDD               | -0.5 to 7.0       | V    |
| Input voltage        |            | V <sub>IN</sub>   | -0.5 to VDD + 0.3 | V    |
| Storage temperature  | range      | T <sub>stg</sub>  | -55 to 125        | °C   |
|                      | BU21072MUV |                   | 272 *1            |      |
| Power dissipation    | BU21078MUV | Pd                | 304 <sup>*2</sup> | mW   |
|                      | BU21078FV  |                   | 640 <sup>*3</sup> |      |
| Maximum junction ter | mperature  | T <sub>jmax</sub> | 125               | °C   |

Derated by 2.72mW/°C over 25°C. (IC only). Derated by 3.04mW/°C over 25°C. (IC only). Derated by 6.4mW/°C over 25°C. (IC only). \*1

\*2 \*3

# **Recommended Operating Ratings**

| Parameter                   | Symbol           | Rating     | Unit |
|-----------------------------|------------------|------------|------|
| Power supply voltage        | VDD              | 3.0 to 5.5 | V    |
| Operating temperature range | T <sub>opr</sub> | -20 to 85  | °C   |

# Electrical Characteristics (Ta = 25°C , VDD = 3.3V , VSS = 0V)

| Parameter                      | Symbol            |           | Rating |           | Linit | Condition                |
|--------------------------------|-------------------|-----------|--------|-----------|-------|--------------------------|
| Faranielei                     | Symbol            | Min.      | Тур.   | Max.      | Unit  | Condition                |
| Input High voltage             | VIH               | VDD x 0.7 | -      | VDD + 0.3 | V     |                          |
| Input Low voltage              | VIL               | VSS - 0.3 | -      | VDD x 0.3 | V     |                          |
| Output High voltage            | V <sub>OH</sub>   | VDD - 0.5 | -      | VDD       | V     | I <sub>OH</sub> = -4mA   |
| Output Low voltage             | V <sub>OL</sub>   | VSS       | -      | VSS + 0.5 | V     | I <sub>OL</sub> = 4mA    |
| Oscillator clock frequency     | f <sub>osc</sub>  | 45        | 50     | 55        | MHz   |                          |
| DVDD LDO output voltage        | V <sub>DVDD</sub> | 1.35      | 1.50   | 1.65      | V     |                          |
| AVDD LDO output voltage        | V <sub>AVDD</sub> | 2.63      | 2.73   | 2.83      | V     |                          |
| Power-on-reset release voltage |                   | 2.25      | -      | 2.55      | V     |                          |
| Power-on-reset detect voltage  |                   | 2.10      | -      | 2.40      | V     |                          |
| Operating current              | I <sub>DD</sub>   | -         | 3.5    | -         | mA    | Without load of sensors. |

# Register Map (OSC = 50MHz , unless otherwise noted) No accessing to the reserved areas is allowed.

| Group         | Address   | Name                  | B/W          | Ini    | 7           | 6           | 5           | 4           | 3           | 2           | 1           | 0           |
|---------------|-----------|-----------------------|--------------|--------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|               | 000       | SIN DATA              | D            | 000    | SD STN9[7]  | OD OTNO [0] | OD OTNO [F] | SD SING[4]  | OD OTNO [9] | SD STN0[2]  | SD STN0[1]  | SD SING[0]  |
|               | 0,00      | SIN_DATA              | n            | 0,00   | 30_31N0[7]  | 30_31N0[6]  | 30_31N0[0]  | 3D_31N0[4]  | 30_31N0[3]  | 3D_31N0[2]  | 3D_31W0[1]  | 3D_31N0[0]  |
|               | U×01      | SIN_DATA              | ĸ            | 0×00   | SD_SIN1[7]  | SD_SIN1[6]  | SD_SIN1[5]  | SD_SIN1[4]  | SD_SIN1[3]  | SD_SIN1[2]  | SD_SIN1[1]  | SD_SIN1[0]  |
|               | 0×02      | SIN_DATA              | R            | 0×00   | SD_SIN2[7]  | SD_SIN2[6]  | SD_SIN2[5]  | SD_SIN2[4]  | SD_SIN2[3]  | SD_SIN2[2]  | SD_SIN2[1]  | SD_SIN2[0]  |
|               | 0×03      | SIN_DATA              | R            | 0×00   | SD_SIN3[7]  | SD_SIN3[6]  | SD_SIN3[5]  | SD_SIN3[4]  | SD_SIN3[3]  | SD_SIN3[2]  | SD_SIN3[1]  | SD_SIN3[0]  |
|               | 0×04      | SIN_DATA              | R            | 0×00   | SD_SIN4[7]  | SD_SIN4[6]  | SD_SIN4[5]  | SD_SIN4[4]  | SD_SIN4[3]  | SD_SIN4[2]  | SD_SIN4[1]  | SD_SIN4[0]  |
|               | 0×05      | SIN DATA              | R            | 0×00   | SD_SIN5[7]  | SD_SIN5[6]  | SD_SIN5[5]  | SD_SIN5[4]  | SD_SIN5[3]  | SD_SIN5[2]  | SD_SIN5[1]  | SD_SIN5[0]  |
|               | 0.406     | SIN DATA              | R            | 0~00   | SD_SIN6[7]  | SD SING[6]  | SD_SING[5]  | SD_SING[4]  | SD SING[3]  | SD_SING[2]  | SD_SING[1]  | SD_SING[0]  |
|               | 0×07      | SIN DATA              | R            | 0,00   | SD_SIN7[7]  | SD_SIN7[8]  | SD_SIN7[5]  | SD_SIN7[4]  | SD_SIN7[9]  | SD_SIN7[2]  | SD_SIN7[1]  | SD_SIN7[0]  |
| Detect value  | 0,07      | SIN_DATA              | n            | 0,00   | 00_01N/[/]  | 00_01N/[0]  | 00_01N/[0]  | 00_01N/[4]  | 00_01W7[0]  | 00_01W7[2]  | 00_01W7[1]  | 30_31W7[0]  |
|               | 0×08      | SIN_DATA              | ĸ            | 000    | SD_S1N8[7]  | SD_S1N8[6]  | SD_S1N8[0]  | SD_S198[4]  | 20_31N8[3]  | SD_S1N8[2]  | SD_S1N8[1]  | SD_S1N8[0]  |
|               | 0×09      | SIN_DATA              | R            | 0×00   | SD_SIN9[7]  | SD_SIN9[6]  | SD_SIN9[5]  | SD_SIN9[4]  | SD_SIN9[3]  | SD_SIN9[2]  | SD_SIN9[1]  | SD_SIN9[0]  |
|               | 0×0A      | SIN_DATA              | R            | 0×00   | SD_SIN10[7] | SD_SIN10[6] | SD_SIN10[5] | SD_SIN10[4] | SD_SIN10[3] | SD_SIN10[2] | SD_SIN10[1] | SD_SIN10[0] |
|               | 0×0B      | SIN_DATA              | R            | 0x00   | SD_SIN11[7] | SD_SIN11[6] | SD_SIN11[5] | SD_SIN11[4] | SD_SIN11[3] | SD_SIN11[2] | SD_SIN11[1] | SD_SIN11[0] |
|               | 0×0C      | SIN_DATA              | R            | 0×00   | SD_SIN12[7] | SD_SIN12[6] | SD_SIN12[5] | SD_SIN12[4] | SD_SIN12[3] | SD_SIN12[2] | SD_SIN12[1] | SD_SIN12[0] |
|               | 0×0D      | SIN DATA              | R            | 0×00   | SD_SIN13[7] | SD_SIN13[6] | SD_SIN13[5] | SD_SIN13[4] | SD_SIN13[3] | SD_SIN13[2] | SD_SIN13[1] | SD_SIN13[0] |
|               | 0×0F      | SIN DATA              | R            | 0,00   | SD_SIN14[7] | SD_SIN14[8] | SD_SIN14[5] | SD SINIA[A] | SD_SIN14[3] | SD_SIN14[2] | SD_SIN14[1] | SD_SIN14[0] |
|               | 0.000     | SIN DATA              | D            | 0.00   | SD_SINIE[7] | OD_OIN14[0] | OD_OIN14[0] | SD_SINIE[4] |             | OD_OIN14[2] | OD_OIN14[1] | OD_OIN14[0] |
|               | 0.40      | SIN_DATA              | R R          | 0 00   | SD_SINIS[/] | SD_SINIS[6] | SD_SINIS[5] | SD_SINI5[4] | 20_31M19[8] | SD_SINIS[2] |             | 30_31N15[0] |
|               | U×10      | INTERRUPT             | R            | 0x00   | CUNIDET     | UFFDET      | UNDET       | PERCAL      | PWM         | ERCAL       | CAL         | INI         |
|               | 0×11      | STATE_SIN             | R            | 0×00   | SIN7        | SING        | SIN5        | SIN4        | SIN3        | SIN2        | SIN1        | SINO        |
|               | 0×12      | STATE_SIN             | R            | 0×00   | SIN15       | SIN14       | SIN13       | SIN12       | SIN11       | SIN10       | SIN9        | SIN8        |
|               | 0×13      | DETECT_ON             | R            | 0×00   | SW7         | SW6         | SW5         | S#4         | SW3         | SW2         | SW1         | SWO         |
|               | 0×14      | DETECT_ON             | R            | 0×00   | SW15        | SW14        | SW13        | SW12        | SW11        | SW10        | SW9         | SW8         |
|               | 0×15      | DETECT ON             | R            | 0×00   | MAT         | -           | KEY[5]      | KEY[4]      | KEY[3]      | KEY[2]      | KEY[1]      | KEY [0]     |
|               | 0×16      | DETECT OFF            | R            | 0~00   | SM2         | 2002        | Sm2         | NW2         | 2002        | Sm5         | SM1         | SMU         |
| Detect result | 013       | DETECT_OFF            |              | 000    | 0017        | 0110        | 0110        | 0114        | 000         | 0112        | 0111        | 0110        |
| Detect Tesurt | 0×17      | DETECT_UFF            | R            | 0 0 00 | 5815        |             | 3813        | 5112        | 3111        | 5010        | 383         | 3110        |
|               | U×18      | DETECT_UFF            | R            | 0×00   | MAI         | -           | KEY[5]      | KEY[4]      | KEY[3]      | KEY[2]      | KEY[1]      | KEY[U]      |
| 1             | 0×19      | DETECT_CONT           | R            | 0×00   | SW7         | SW6         | SW5         | S#4         | S#3         | SW2         | SW1         | SWO         |
| 1             | 0×1A      | DETECT_CONT           | R            | 0×00   | S#15        | S#14        | SW13        | SW12        | SW11        | S\10        | S#9         | SW8         |
| 1             | 0×1B      | DETECT_CONT           | R            | 0×00   | MAT         | -           | KEY [5]     | KEY[4]      | KEY[3]      | KEY[2]      | KEY[1]      | KEY[0]      |
|               | 0×1C      | STATE                 | R            | 0×00   | -           | -           | -           | -           | -           | -           | -           | CALIB       |
|               | 0x1D      | DETECT PWM FINISH     | B            | 0×00   | LED7        | LED6        | LED5        | LED4        | LED3        | LED?        | LED1        | LEDO        |
|               | 0×1F      | RACT                  | R            | 0~00   | RACT [7]    | RACT [8]    | RACT [5]    | BACT [4]    | RACT [2]    | RACT [2]    | RACT[1]     | RACT [0]    |
| -             | 0.415     | Reserved              |              | 0,00   | 14011/1     | 1901[0]     | 1401[0]     | 19401 [4]   | 1401[0]     | 1801[2]     | CHOIL11     | 1.401 [0]   |
|               | 0.00.04   | neserved<br>Dasa      |              |        |             |             |             |             |             |             |             |             |
|               | 0x20-84   | Keserved              |              |        | 055         | 05          | 05          |             | 077-        | or 1 -      | or t -      | or 7        |
| -             | 0×85      | SRST                  | R/W          | 0×00   | SRST[7]     | SRST[6]     | SRST[5]     | SRST[4]     | SRST[3]     | SRST[2]     | SRST[1]     | SRST[0]     |
| -             | 0×86-89   | Reserved              |              |        |             |             |             |             |             |             |             |             |
| -             | 0×8A      | SRST                  | R/W          | 0×00   | SRST[15]    | SRST[14]    | SRST[13]    | SRST[12]    | SRST[11]    | SRST[10]    | SRST[9]     | SRST[8]     |
| -             | 0×8B-BF   | Reserved              |              |        |             |             |             |             |             |             |             |             |
|               | 0×C0      | CEG SIN               | R/W          | 0×00   | GA_SIN1[1]  | GA_SIN1[0]  | ON SIN1[1]  | ON SIN1[0]  | GA SING[1]  | GA SINO[0]  | ON SING[1]  | ON SING[0]  |
|               | 0×01      | CEG SIN               | R/W          | 0.400  | GA SINS[1]  | GA_SINS[0]  | ON STNS[1]  | ON_SIN3[0]  | GA_SIN2[1]  | GA_SIN2[0]  | ON_SIN2[1]  | ON_STN2[0]  |
|               | 0,.01     | CEC SIN               | D/III        | 000    |             | CA CINE[0]  |             | ON SING[0]  |             | CA SINA[0]  | ON_SINA[1]  | ON_SINA[0]  |
|               | 0,00      | OFG_SIN               | D/W          | 0,00   | GA_SIND[1]  | GA_SINS[0]  |             |             | GA_SIN4[1]  | GA_SIN4[0]  | UN_31N4[1]  | UN_31N4[0]  |
|               | U×C3      | CFG_SIN               | R/W          | 0×00   | GA_SIN/[1]  | GA_SIN/[U]  | UN_SIN7[1]  | UN_SIN/[U]  | GA_SIN6[1]  | GA_SIN6[U]  | UN_SING[1]  | UN_SING[U]  |
|               | 0×C4      | CFG_SIN               | R/W          | 0×00   | GA_SIN9[1]  | GA_SIN9[0]  | ON_SIN9[1]  | ON_SIN9[0]  | GA_SIN8[1]  | GA_SIN8[0]  | ON_SIN8[1]  | ON_SIN8[0]  |
|               | 0×C5      | CFG_SIN               | R/W          | 0x00   | GA_SIN11[1] | GA_SIN11[0] | ON_SIN11[1] | ON_SIN11[0] | GA_SIN10[1] | GA_SIN10[0] | ON_SIN10[1] | ON_SIN10[0] |
|               | 0×C6      | CFG_SIN               | R/W          | 0×00   | GA_SIN13[1] | GA_SIN13[0] | ON_SIN13[1] | ON_SIN13[0] | GA_SIN12[1] | GA_SIN12[0] | ON_SIN12[1] | ON_SIN12[0] |
| Sensor        | 0×C7      | CFG SIN               | R/W          | 0×00   | GA SIN15[1] | GA SIN15[0] | ON SIN15[1] | ON SIN15[0] | GA SIN14[1] | GA SIN14[0] | ON SIN14[1] | ON SIN14[0] |
| setting       | 0×08      | CA1 CA0               | R/W          | 0,00   | GA1[3]      | GA1 [2]     | CA1[1]      | GA1 [0]     | CA0 [3]     | GA0 [2]     | GA0 [1]     | CA0 [0]     |
|               | 000       | 049                   | D/III        | 0.00   | GHT[0]      | GHT[2]      | GHTET       | GHTLOJ      | CA9 [9]     | CA9 [9]     | CA9[1]      | CA2 [0]     |
|               | 0xca      | 010                   | 15/W         | 0 00   | -           | -           | -           | -           | GAZ [J]     | GAZ [Z]     | GAZ [1]     | GAZ [0]     |
|               | UXCA      | UNU                   | R/W          | 0×00   |             | UNU[6]      | UNU[5]      | UNU [4]     | UNU [8]     | UNU[2]      | UNU[1]      | UNU [U]     |
|               | 0×CB      | ON1                   | R/W          | 0×00   | ON1[7]      | ON1[6]      | ON1[5]      | ON1[4]      | ON1[3]      | ON1[2]      | ON1[1]      | ON1 [0]     |
|               | 0×CC      | ON2                   | R/W          | 0×00   | ON2 [7]     | ON2 [6]     | ON2 [5]     | ON2 [4]     | ON2 [3]     | ON2 [2]     | ON2 [1]     | ON2 [0]     |
|               | 0×CD      | OFF                   | R/W          | 0×00   | -           | OFF [6]     | OFF [5]     | OFF [4]     | OFF [3]     | OFF [2]     | OFF [1]     | OFF [0]     |
|               | 0×CE      | OSTIMES               | R/W          | 0×00   | 0ST[3]      | OST[2]      | 0ST[1]      | OST[0]      | -           | -           | -           | -           |
|               | 0×CE      | CONTTIMES             | R/W          | 0×00   | CONTSEL     | -           | CONT [5]    | CONT[4]     | CONT [3]    | CONT [2]    | CONT[1]     | CONT [0]    |
|               | 0~00      | MCK CM KEA            | R/W          | 0~00   | MCK CW7     | MGK GMB     | MCK CW5     | MGK GMN     | MCK CM3     | MCK CW5     | MSK SW1     | MCK CMU     |
|               | 0,00      |                       | D/11         | 0.00   |             | HOK_OULA    |             | HOK_0014    |             |             |             | MOK_ONO     |
|               | 0,01      |                       | D/ W         | 0,00   | MON_SWID    | MOK_0114    | MOK_SW10    | MON_OWIZ    | MON_OWIT    | MON_OTTU    | MON_SWO     | MON_OWO     |
|               | UXUZ      | MSK_SW_KEY            | K/W          | 000    | MSK_KEYH    | MSK_KEYG    | MSK_KEYF    | MSK_KEYE    | MSK_KEYU    | MSK_KETC    | MSK_KETB    | MSK_KETA    |
|               | 0×D3      | MSK_SW_KEY            | R/W          | 0×00   | MSK_KEYP    | MSK_KEYU    | MSK_KEYN    | MSK_KEYM    | MSK_KEYL    | MSK_KEYK    | MSK_KEYJ    | MSK_KEYI    |
| Mask setting  | 0×D4      | MSK_SW_KEY            | R/W          | 0×00   | MSK_KEYX    | MSK_KEYW    | MSK_KEYV    | MSK_KEYU    | MSK_KEYT    | MSK_KEYS    | MSK_KEYR    | MSK_KEYQ    |
|               | 0×D5      | MSK_SW_KEY            | R/W          | 0×00   | MSK_KEYAF   | MSK_KEYAE   | MSK_KEYAD   | MSK_KEYAC   | MSK_KEYAB   | MSK_KEYAA   | MSK_KEYZ    | MSK_KEYY    |
|               | 0×D6      | MSK_SW_KEY            | R/W          | 0×00   | -           | -           | -           | -           | MSK_KEYAJ   | MSK_KEYAI   | MSK_KEYAH   | MSK_KEYAG   |
|               | 0xD7-0xDE | Reserved              |              |        |             |             |             |             |             |             |             |             |
|               | 0×DF      | MSK INTERBUPT         | R/W          | 0×00   | -           | -           | -           | MSK PERCAL  | -           | MSK ERCAL   | MSK CAL     | -           |
|               | 0×F0      | PWM-0                 | B/W          | 0×00   | FAL [3]     | FAL [2]     | FAL [1]     | FAL [0]     | RIS[3]      | RIS[2]      | RIS[1]      | RIS[0]      |
|               | 0~E1      | PWM-0                 | P/m          | 0~00   | 0FE [9]     | 0FE [2]     | 055[1]      | 066[0]      | DN [3]      | DN [2]      | DN [1]      | DN [0]      |
|               | 0.00      | DIIIM_0               | p/m          | 0.00   | -           | -           | -           |             | DED [0]     | DED [0]     | DED [1]     | pep fo1     |
| 1             | 0.00      |                       | 07 T         | 000    | EAL FOR     | EAL FOR     | EAL [1]     | EAL FOR     | DTO[0]      | DTO[0]      | DTO E13     | DTO[0]      |
| 1             | UXE0      | FWMF1                 | 17/11        | 0.00   |             |             |             | FAL[0]      | n16[6]      | n10[2]      | n13[1]      | n13[0]      |
|               | UXE4      | rwni- i               | B/W          | 0 x00  | UFF[3]      | 0FF[2]      |             | 0FF[0]      |             | UN[2]       |             | UN [U]      |
| 1             | U×E5      | PWM-1                 | R/₩          | U×00   | -           | -           | -           | -           | KEP[3]      | KEP[2]      | KEP[1]      | KEP[0]      |
|               | 0×E6      | PWM-2                 | R/₩          | 0×00   | FAL[3]      | FAL[2]      | FAL[1]      | FAL[0]      | RIS[3]      | RIS[2]      | RIS[1]      | RIS[0]      |
| PWM setting   | 0×E7      | PWM-2                 | R/₩          | 0×00   | 0FF[3]      | OFF[2]      | OFF[1]      | OFF[0]      | ON[3]       | ON [2]      | ON[1]       | ON [0]      |
|               | 0×E8      | PWM-2                 | R/W          | 0×00   | -           | -           | -           | -           | REP [3]     | REP [2]     | REP[1]      | REP [0]     |
|               | 0×E9      | PWM-3                 | R/W          | 0×00   | FAL[3]      | FAL[2]      | FAL[1]      | FAL[0]      | RIS[3]      | RIS[2]      | RIS[1]      | RIS[0]      |
|               | 0×EA      | PWM-3                 | R/W          | 0×00   | 0FF[3]      | 0FF[2]      | 0FF[1]      | OFF [0]     | ON[3]       | ON [2]      | ON[1]       | ON [0]      |
| 1             | 0×EB      | PWM-3                 | B/W          | 0×00   | -           | -           | -           | -           | REP [3]     | BEP [2]     | REP [1]     | REP [0]     |
|               | 0.√EC     | PWM FN                | R/W          | 0~00   | LED7 EN     | LEDG EN     | LEDS EN     | LED4 EN     | LEDS EN     | LED2 EN     | I FD1 FM    | I FDO FM    |
|               | puer      | ршы асстон            | p/m          | 0.00   | LEDO DA F11 | LEDS DATOT  | LED2 DAT11  | LED2 DATO1  | LED1 DAT11  | LED1 DATO1  |             | LEDO DATOT  |
| 1             | 0 XED     | DUIN ACCION           | 11/11<br>D/W | 0.00   | LEDO_FALLI  | LEDO_FALUI  | LEVE_FALLI  |             | LEDE DATE:  |             | LEDU_FALLI  | LEDU_FALUJ  |
|               | UXEE      | PWM_ASSIGN            | K/₩          | 0x00   | LEU/_PALIJ  | LED/ PALU   | LED6_PA[1]  | LEUS_PALU   | LEUS_PA[1]  | LEDS_PA[U]  | LEU4_PAL1   | LEU4_PALU   |
| I             | UxEF      | LED_CALIB             | B/₩          | U×00   | PERIOD[3]   | PERIOD[2]   | PERIOD[1]   | PERIOD[1]   | PWMCAL      | PERCALCOND  | PERCAL      | LEDCAL      |
|               | 0×F0      | CLR_INTERRUPT         | R/₩          | 0×00   | -           | -           | -           | PERCAL      | -           | ERCAL       | CAL         | INI         |
|               | 0×F1      | CLR_DETECT_ON         | R/W          | 0×00   | SW7         | SW6         | SW5         | S#4         | S#3         | SW2         | SW1         | SWO         |
| 1             | 0×F2      | CLR_DETECT_ON         | R/W          | 0×00   | S#15        | SW14        | SW13        | SW12        | SW11        | SW10        | S#9         | SW8         |
|               | 0×F3      | CLR DETECT ON         | B/₩          | 0×00   | MAT         | -           | -           | -           | -           | -           | -           | -           |
| 1             | 0×F4      | CLR DETECT OFF        | B/₩          | 0×00   | SW7         | SW6         | SW5         | S#4         | SW3         | SW2         | SW1         | SWO         |
|               |           | CIR DETECT OFF        | P/0          | 0~00   | 011F        | QW1.4       | CW19        | CW10        | QW11        | 9012        | 2002        | 2002        |
|               | 0.00      |                       | D/11         | 0.00   | 0110<br>UAT | 01/14       | 0110        | 0112        | ্রণা।       | 3π10        | 0170        | 0110        |
|               | UXF6      | ULK_DETECT_UFF        | B/W          | 0.00   | MAI         | -           | -           | -           | -           | -           | -           | -           |
| Control       | 0×F7      | CLR_DETECT_CONT       | R/W          | 0×00   | SW7         | SW6         | SW5         | SW4         | SW3         | SW2         | SW1         | SWO         |
|               | 0×F8      | CLR_DETECT_CONT       | R/₩          | 0×00   | SW15        | SW14        | SW13        | SW12        | SW11        | SW10        | S#9         | S#8         |
|               | 0×F9      | CLR_DETECT_CONT       | R/₩          | 0×00   | MAT         | -           | -           | -           | -           | -           | -           | -           |
|               | 0×FA      | LED CH                | R/W          | 0×00   | LED7        | LED6        | LED5        | LED4        | LED3        | LED2        | LED1        | LEDO        |
|               | 0.√FR     | GLB DETECT PWW FINISH | R/W          | 0~00   | LED7        | LEDR        | L ED5       | L EDA       | L ED3       | LED2        | LEDI        | LEDO        |
|               | 0,00      | Reserved              | 10/11        | 0,00   |             | LLVJ        | LLUJ        | LL04        | LLDO        | LLVE        |             | LLUJ        |
|               | 0CC       | neserved              | p./m         | 000    | HIGOT [22]  | ILLANT [2]  | HEAT [7]    | IIIAOT [ 43 | ILLANT [0]  | IIIAOT [9]  | IIIAOT [+3  | IIIAOT [0]  |
|               | UxFE      | WACT                  | _ B/₩        | U×00   | WACT[7]     | WACT[6]     | WACT[5]     | WACT[4]     | WACT[3]     | WACT[2]     | WACT[1]     | WACT [0]    |
| 1             | 0×FF      | CNT                   | R/₩          | 0×00   | FRCRLS      | CALOVF      | -           | CALMOD      | -           | L CFG       | CAL         | ACT         |

# [0x00-0x0F : Sensor Data]

Name: SIN\_DATA Address: 0x00-0x0F

Description: This register shows 8bit ADC value of each sensor.

|              | Bit7        | Bit6        | Bit5        | Bit4        | Bit3        | Bit2        | Bit1        | Bit0        |
|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 0x00         | SD_SIN0[7]  | SD_SIN0[6]  | SD_SIN0[5]  | SD_SIN0[4]  | SD_SIN0[3]  | SD_SIN0[2]  | SD_SIN0[1]  | SD_SIN0[0]  |
| 0x01         | SD_SIN1[7]  | SD_SIN1[6]  | SD_SIN1[5]  | SD_SIN1[4]  | SD_SIN1[3]  | SD_SIN1[2]  | SD_SIN1[1]  | SD_SIN1[0]  |
| 0x02         | SD_SIN2[7]  | SD_SIN2[6]  | SD_SIN2[5]  | SD_SIN2[4]  | SD_SIN2[3]  | SD_SIN2[2]  | SD_SIN2[1]  | SD_SIN2[0]  |
| 0x03         | SD_SIN3[7]  | SD_SIN3[6]  | SD_SIN3[5]  | SD_SIN3[4]  | SD_SIN3[3]  | SD_SIN3[2]  | SD_SIN3[1]  | SD_SIN3[0]  |
| 0x04         | SD_SIN4[7]  | SD_SIN4[6]  | SD_SIN4[5]  | SD_SIN4[4]  | SD_SIN4[3]  | SD_SIN4[2]  | SD_SIN4[1]  | SD_SIN4[0]  |
| 0x05         | SD_SIN5[7]  | SD_SIN5[6]  | SD_SIN5[5]  | SD_SIN5[4]  | SD_SIN5[3]  | SD_SIN5[2]  | SD_SIN5[1]  | SD_SIN5[0]  |
| 0x06         | SD_SIN6[7]  | SD_SIN6[6]  | SD_SIN6[5]  | SD_SIN6[4]  | SD_SIN6[3]  | SD_SIN6[2]  | SD_SIN6[1]  | SD_SIN6[0]  |
| 0x07         | SD_SIN7[7]  | SD_SIN7[6]  | SD_SIN7[5]  | SD_SIN7[4]  | SD_SIN7[3]  | SD_SIN7[2]  | SD_SIN7[1]  | SD_SIN7[0]  |
| 0x08         | SD_SIN8[7]  | SD_SIN8[6]  | SD_SIN8[5]  | SD_SIN8[4]  | SD_SIN8[3]  | SD_SIN8[2]  | SD_SIN8[1]  | SD_SIN8[0]  |
| 0x09         | SD_SIN9[7]  | SD_SIN9[6]  | SD_SIN9[5]  | SD_SIN9[4]  | SD_SIN9[3]  | SD_SIN9[2]  | SD_SIN9[1]  | SD_SIN9[0]  |
| 0x0A         | SD_SIN10[7] | SD_SIN10[6] | SD_SIN10[5] | SD_SIN10[4] | SD_SIN10[3] | SD_SIN10[2] | SD_SIN10[1] | SD_SIN10[0] |
| 0x0B         | SD_SIN11[7] | SD_SIN11[6] | SD_SIN11[5] | SD_SIN11[4] | SD_SIN11[3] | SD_SIN11[2] | SD_SIN11[1] | SD_SIN11[0] |
| 0x0C         | SD_SIN12[7] | SD_SIN12[6] | SD_SIN12[5] | SD_SIN12[4] | SD_SIN12[3] | SD_SIN12[2] | SD_SIN12[1] | SD_SIN12[0] |
| 0x0D         | SD_SIN13[7] | SD_SIN13[6] | SD_SIN13[5] | SD_SIN13[4] | SD_SIN13[3] | SD_SIN13[2] | SD_SIN13[1] | SD_SIN13[0] |
| 0x0E         | SD_SIN14[7] | SD_SIN14[6] | SD_SIN14[5] | SD_SIN14[4] | SD_SIN14[3] | SD_SIN14[2] | SD_SIN14[1] | SD_SIN14[0] |
| 0x0F         | SD_SIN15[7] | SD_SIN15[6] | SD_SIN15[5] | SD_SIN15[4] | SD_SIN15[3] | SD_SIN15[2] | SD_SIN15[1] | SD_SIN15[0] |
| R/W          | R           | R           | R           | R           | R           | R           | R           | R           |
| Initial val. | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |

# [0x10 : Interrupt factor]

Name: INTERRUPT

Address: 0x10 Description: T

This register shows the interrupt factors. Port INT outputs this register's OR operation.

INI : Initialization finish.

This register is set to '1 ' when initialization is complete after power-on-sequence or watch dog timer reset. This register is cleared by setting '0 ' to the bit INI that is included the "Interrupt Source" registers (Address 0xF0).

CAL : Software-calibration finish.

This register is set to '1 'when software calibration is complete. This register is cleared by setting '0 ' to the bit CAL that is included the "Clear interrupt" registers (Address 0xF0).

ERCAL :Error.

This register is set to '1 'when IC should be executing the re-calibration. This register is cleared by setting '0 ' to the bit ERCAL that is included the "Clear interrupt" registers (Address 0xF0). IC executes self calibration after this interrupt.

PWM : PWM continuous flashing of LED finish.

This register is set to '1 'when LED PWM drive has finished. This register is cleared by clearing every bit of the "Interrupt of PWM continuous flashing" register.

PERCAL : Periodic calibration finish.

This register is set to '1 'when periodic calibration is complete. This register is cleared by setting '0 ' to the bit PERCAL that is included the "Clear interrupt" registers (Address 0xF0). ONDET : Detection of switch-on.

This register is set to '1 'when it detects a switch operation is considered to be Off. This register is cleared by clearing every bit of the "Detection Switch-On" register.

OFFDET : Detection of switch-off.

This register is set to '1 'when it detects a switch operation is considered to be Off. This register is cleared by clearing every bit of the "Detection Switch-Off" register.

CONTDET : Detection of continued touch.

This register is set to '1 'when it detects a continued touch switch operation. This register is cleared by clearing every bit of the "Detection continued touch" register.

|              | Bit7    | Bit6   | Bit5  | Bit4   | Bit3 | Bit2  | Bit1 | Bit0 |
|--------------|---------|--------|-------|--------|------|-------|------|------|
| 0x10         | CONTDET | OFFDET | ONDET | PERCAL | PWM  | ERCAL | CAL  | INI  |
| R/W          | R       | R      | R     | R      | R    | R     | R    | R    |
| Initial val. | 0       | 0      | 0     | 0      | 0    | 0     | 0    | 0    |

# [0x11-0x12 : Sensor State]

| Name:          | STATE_SIN                |
|----------------|--------------------------|
| Address:       | 0x11-0x12                |
| <b>D</b> · · · | <b>T</b> 1.1.1.1.1.1.1.1 |

Description:

This register indicates the status of switch-on or switch-off for each sensor.

1 : Switch-on.(Register "SIN" > Register "OFF") 0 : switch-off. (Register "SIN" < Register "OFF")

|              | Bit7  | Bit6  | Bit5  | Bit4  | Bit3  | Bit2  | Bit1 | Bit0 |
|--------------|-------|-------|-------|-------|-------|-------|------|------|
| 0x11         | SIN7  | SIN6  | SIN5  | SIN4  | SIN3  | SIN2  | SIN1 | SIN0 |
| 0x12         | SIN15 | SIN14 | SIN13 | SIN12 | SIN11 | SIN10 | SIN9 | SIN8 |
| R/W          | R     | R     | R     | R     | R     | R     | R    | R    |
| Initial val. | 0     | 0     | 0     | 0     | 0     | 0     | 0    | 0    |

#### [0x13-0x15 : Detection Switch-On]

Name: DETECT ON

Address: 0x13-0x15

Description:

This register indicates the change from Off to On every switch.

Since SW 0-15 supports multiple pressed, each switch has a bit recognition. And the matrix key does not correspond to multiple press, so matrix switch is indicated by 1 bit for ON detection (MAT) and 6 bits for 36 positions (KEY). Logical OR of each SW and MAT will be ONDET interrupt source register.

1 : Detect On. 0 :Cleared.

|              | Bit7 | Bit6 | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
|--------------|------|------|--------|--------|--------|--------|--------|--------|
| 0x13         | SW7  | SW6  | SW5    | SW4    | SW3    | SW2    | SW1    | SW0    |
| 0x14         | SW15 | SW14 | SW13   | SW12   | SW11   | SW10   | SW9    | SW8    |
| 0x15         | MAT  | -    | KEY[5] | KEY[4] | KEY[3] | KEY[2] | KEY[1] | KEY[0] |
| R/W          | R    | R    | R      | R      | R      | R      | R      | R      |
| Initial val. | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      |

# [0x16-0x18 : Detection Switch-Off]

Name: DETECT\_OFF Address: 0x16-0x18

Address: 0 Description:

n: This register indicates the change from On to Off every switch.

Since SW 0-15 supports multiple pressed, each switch has a bit recognition. And the matrix key does not correspond to multiple press, so matrix switch is indicated by 1 bit for OFF detection (MAT) and 6 bits for 36 positions (KEY). Logical OR of each SW and MAT will be OFFDET interrupt source register.

1 : Detect Off. 0 :Cleared.

|              | Bit7 | Bit6 | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
|--------------|------|------|--------|--------|--------|--------|--------|--------|
| 0x16         | SW7  | SW6  | SW5    | SW4    | SW3    | SW2    | SW1    | SW0    |
| 0x17         | SW15 | SW14 | SW13   | SW12   | SW11   | SW10   | SW9    | SW8    |
| 0x18         | MAT  | -    | KEY[5] | KEY[4] | KEY[3] | KEY[2] | KEY[1] | KEY[0] |
| R/W          | R    | R    | R      | R      | R      | R      | R      | R      |
| Initial val. | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      |

# [0x19-0x1B : Detection continued touch]

Name: DETECT\_CONT Address: 0x19-0x1B

Description:

This register indicates the detection of continued touch every switch.

Since SW 0-15 supports multiple pressed, each switch has a bit recognition. And the matrix key does not correspond to multiple press, so matrix switch is indicated by 1 bit for CONT detection (MAT) and 6 bits for 36 positions (KEY). Logical OR of each SW and MAT will be CONTDET interrupt source register.

1 : Detect continued touch. 0 :Cleared.

|              | Bit7 | Bit6 | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
|--------------|------|------|--------|--------|--------|--------|--------|--------|
| 0x19         | SW7  | SW6  | SW5    | SW4    | SW3    | SW2    | SW1    | SW0    |
| 0x1A         | SW15 | SW14 | SW13   | SW12   | SW11   | SW10   | SW9    | SW8    |
| 0x1B         | MAT  | -    | KEY[5] | KEY[4] | KEY[3] | KEY[2] | KEY[1] | KEY[0] |
| R/W          | R    | R    | R      | R      | R      | R      | R      | R      |
| Initial val. | 0    | 0    | 0      | 0      | 0      | 0      | 0      | 0      |

# [0x1C : State of IC]

Name:STATEAddress:0x1CDescription:This register indicates the state of IC.

# **CALIB** : During calibration :

This bit is indicates that IC is during calibration. When this bit is "1", IC is doing calibration. The required time for calibration : About 150msec.

|              | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0  |
|--------------|------|------|------|------|------|------|------|-------|
| 0x1C         | -    | -    | -    | -    | -    | -    | -    | CALIB |
| R/W          | -    | -    | -    | -    | -    | -    | -    | R     |
| Initial val. | -    | -    | -    | -    | -    | -    | -    | 0     |

# [0x1D : Interrupt of PWM continuous flashing]

Name: DETECT\_PWM\_FINISH

Address: 0x1D

Description:

This register indicates the end of the LED PWM drive. This register has a bit aware of each LED. The logical OR of all bits of this register will be the bit PWM that is included the "Interrupt Source" registers.
 1 : Finished LED PWM drive. 0 : Clear.

|              | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|--------------|------|------|------|------|------|------|------|------|
| 0x1D         | LED7 | LED6 | LED5 | LED4 | LED3 | LED2 | LED1 | LED0 |
| R/W          | R    | R    | R    | R    | R    | R    | R    | R    |
| Initial val. | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

# [0x1E : Read register for operation check of CPU]

| Name:        | RACT   |
|--------------|--------|
| Address:     | 0x1E   |
| Description: | This r |

n: This register is a read register for operational check of the IC. The value written to the write register for operation check (Address is 0xFE) is copied to this register. Comparing the write value with the read value is equal, CPU and I/F are operating normally.

The required time to copy to this register from the write register for operation check : About 20usec.

|              | Bit7    | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|--------------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0x1E         | RACT[7] | RACT[6] | RACT[5] | RACT[4] | RACT[3] | RACT[2] | RACT[1] | RACT[0] |
| R/W          | R       | R       | R       | R       | R       | R       | R       | R       |
| Initial val. | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

# [0x85, 0x8A: Software Reset]

| Name:    | SRS  |
|----------|------|
| Address: | 0x85 |

Address: 0x85, 0x8A

Description: These registers make a hardware reset. When the value of "0x85" Register is set to 0x55 and the value of "0x8A" Register is set to 0xAA, a hardware reset will be generated.

|              | Bit7     | Bit6     | Bit5     | Bit4     | Bit3     | Bit2     | Bit1    | Bit0    |
|--------------|----------|----------|----------|----------|----------|----------|---------|---------|
| 0x85         | SRST[7]  | SRST[6]  | SRST[5]  | SRST[4]  | SRST[3]  | SRST[2]  | SRST[1] | SRST[0] |
| 0x8A         | SRST[15] | SRST[14] | SRST[13] | SRST[12] | SRST[11] | SRST[10] | SRST[9] | SRST[8] |
| R/W          | R/W      | R/W      | R/W      | R/W      | R/W      | R/W      | R/W     | R/W     |
| Initial val. | 0        | 0        | 0        | 0        | 0        | 0        | 0       | 0       |

# [0xC0 - 0xC7 : Select a setting for Gain and Threshold for "Off $\rightarrow$ On"]

Name: CFG\_SIN Address: 0xC0 – 0xC7

Description: You can set 3 values for gain and set 3 values for threshold for "Off  $\rightarrow$  On" to this IC.

These registers are used to select a setting for gain and threshold from three settings for every each sensor.

| 0x0 : Select GA0.<br>0x1 : Select GA1.<br>0x2 : Select GA2 |
|------------------------------------------------------------|
| 0x3 : Select GA0.                                          |
| 0x0 : Select ON0.                                          |
| 0x1 : Select ON1.                                          |
| 0x2 : Select ON2.                                          |
| 0x3 : Select ON0.                                          |
|                                                            |

|              | Bit7        | Bit6        | Bit5        | Bit4        | Bit3        | Bit2        | Bit1        | Bit0        |
|--------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 0xC0         | GA_SIN1[1]  | GA_SIN1[0]  | ON_SIN1[1]  | ON_SIN1[0]  | GA_SIN0[1]  | GA_SIN0[0]  | ON_SIN0[1]  | ON_SIN0[0]  |
| 0xC1         | GA_SIN3[1]  | GA_SIN3[0]  | ON_SIN3[1]  | ON_SIN3[0]  | GA_SIN2[1]  | GA_SIN2[0]  | ON_SIN2[1]  | ON_SIN2[0]  |
| 0xC2         | GA_SIN5[1]  | GA_SIN5[0]  | ON_SIN5[1]  | ON_SIN5[0]  | GA_SIN4[1]  | GA_SIN4[0]  | ON_SIN4[1]  | ON_SIN4[0]  |
| 0xC3         | GA_SIN7[1]  | GA_SIN7[0]  | ON_SIN7[1]  | ON_SIN7[0]  | GA_SIN6[1]  | GA_SIN6[0]  | ON_SIN6[1]  | ON_SIN6[0]  |
| 0xC4         | GA_SIN9[1]  | GA_SIN9[0]  | ON_SIN9[1]  | ON_SIN9[0]  | GA_SIN8[1]  | GA_SIN8[0]  | ON_SIN8[1]  | ON_SIN8[0]  |
| 0xC5         | GA_SIN11[1] | GA_SIN11[0] | ON_SIN11[1] | ON_SIN11[0] | GA_SIN10[1] | GA_SIN10[0] | ON_SIN10[1] | ON_SIN10[0] |
| 0xC6         | GA_SIN13[1] | GA_SIN13[0] | ON_SIN13[1] | ON_SIN13[0] | GA_SIN12[1] | GA_SIN12[0] | ON_SIN12[1] | ON_SIN12[0] |
| 0xC7         | GA_SIN15[1] | GA_SIN15[0] | ON_SIN15[1] | ON_SIN15[0] | GA_SIN14[1] | GA_SIN14[0] | ON_SIN14[1] | ON_SIN14[0] |
| R/W          | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         | R/W         |
| Initial val. | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           |

#### [0xC8 – 0xC9 : Value of GAIN]

Name:

Address:

0xC8 – 0xC9

GA0, GA1, GA2

Description: This register is for setting the gain of AFE. The smaller the value of GA, the gain will be higher. You can set 3 values for gain. These value are assigned to each sensor by register GA\_SIN included CFG\_SIN. The settable range :  $0x1 \le GA \le 0xF$ 

|              |        |        |        | -      |        |        |        |        |
|--------------|--------|--------|--------|--------|--------|--------|--------|--------|
|              | Bit7   | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
| 0xC8         | GA1[3] | GA1[2] | GA1[1] | GA1[0] | GA0[3] | GA0[2] | GA0[1] | GA0[0] |
| 0xC9         | -      | -      | -      | -      | GA2[3] | GA2[2] | GA2[1] | GA2[0] |
| R/W          | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    |
| Initial val. | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

# [0xCA - 0xCC : Value of the threshold for "Off $\rightarrow$ On"]

| Name:                | ON0, ON1, ON2 |
|----------------------|---------------|
| Address <sup>.</sup> | 0xCA = 0xCC   |

Description: These registers are for setting the threshold for "Off  $\rightarrow$  On" operation. You can set 3 values for threshold. If the 8bit ADC value of each sensor (register SENS\_DATA) is larger than this value, the valid "Off  $\rightarrow$  On" operation of the sensor is. These value are assigned to each sensor by register ON\_SIN included CFG\_SIN. The settable range  $\Rightarrow$  0x00  $\leq$  0EE  $\leq$  0N  $\leq$  0xEE

| The settable range : $0x00 < OFF < ON < 0xFF$ |        |        |        |        |        |        |        |        |
|-----------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|
|                                               | Bit7   | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
| 0xCA                                          | ON0[7] | ON0[6] | ON0[5] | ON0[4] | ON0[3] | ON0[2] | ON0[1] | ON0[0] |
| 0xCB                                          | ON1[7] | ON1[6] | ON1[5] | ON1[4] | ON1[3] | ON1[2] | ON1[1] | ON1[0] |
| 0xCC                                          | ON2[7] | ON2[6] | ON2[5] | ON2[4] | ON2[3] | ON2[2] | ON2[1] | ON2[0] |
| R/W                                           | -      | R/W    |
| Initial val.                                  | -      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

# [0xCD : Value of the threshold for "On $\rightarrow$ Off"]

Name: OFF Address: 0xCD

Description:

on: This register is for setting the threshold for "On  $\rightarrow$  Off" operation. If the 8bit ADC value of each sensor (register SENS\_DATA) is smaller than this value, the valid "On  $\rightarrow$  Off" operation of the sensor is.

| The setting range : $0x00 < OFF < ON < 0xFF$ |      |         |         |         |         |         |         |         |  |
|----------------------------------------------|------|---------|---------|---------|---------|---------|---------|---------|--|
|                                              | Bit7 | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |  |
| 0xCD                                         | -    | OFF [6] | OFF [5] | OFF [4] | OFF [3] | OFF [2] | OFF [1] | OFF [0] |  |
| R/W                                          | -    | R/W     |  |
| Initial val.                                 | -    | 0       | 0       | 0       | 0       | 0       | 0       | 0       |  |

# [0xCE :Configuration oversampling]

Name: OSTIMES Address: 0xCE

Description:

OST[3:0] : This register is the number of times of oversampling for canceling chattering to the "ON" or "OFF" operation. If the continuance of the "ON" or "OFF" operations is lower than this register, the operations are ignored. If this register value is 0, the number of times of oversampling is 1.

Sampling rate : About 16[msec].

|              | Bit7   | Bit6   | Bit5   | Bit4   | Bit3 | Bit2 | Bit1 | Bit0 |
|--------------|--------|--------|--------|--------|------|------|------|------|
| 0xCE         | OST[3] | OST[2] | OST[1] | OST[0] | -    | -    | -    | -    |
| R/W          | R/W    | R/W    | R/W    | R/W    | -    | -    | -    | -    |
| Initial val. | 0      | 0      | 0      | 0      | -    | -    | -    | -    |

# [0xCF : Configuration continuous touch]

| Name:        | CONTTIMES                                                                                   |
|--------------|---------------------------------------------------------------------------------------------|
| Address:     | 0xCF                                                                                        |
| Description: | CONTSEL : This register is to select the interrupt frequency by detection continuous touch. |
|              | 1 : Every continuous touch period.                                                          |
|              | 0 · First detect only                                                                       |

0 : First detect only.

CONT[5:0] : Continuous touch period is about 0.1[sec] x CONT.

If the setting value is 0x0, continuous touch function is disable.

(0.1sec  $\leq$  Continuous touch period  $\leq$  6.3sec)

|              | Bit7    | Bit6 | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|--------------|---------|------|---------|---------|---------|---------|---------|---------|
| 0xCF         | CONTSEL | -    | CONT[5] | CONT[4] | CONT[3] | CONT[2] | CONT[1] | CONT[0] |
| R/W          | R/W     | -    | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |
| Initial val. | 0       | -    | 0       | 0       | 0       | 0       | 0       | 0       |

# [0xD0 – 0xD6 : Mask switch operation]

Name: Address:

MSK\_SW\_KEY

0xD0 - 0xD6

Description: This register is for mask to the operation of each matrix switches and each simple switches. The masked switches are excluded from the interrupt factor. It is prohibited that one sensor is assigned to both a matrix switch and a simple switch. The unused switches must be masked. The switches configured by the not included sensors in IC (SIN10-15 in BU21072MUV, SIN8-10 and SIN15 in BU21078MUV/BU21078FV) must be masked.

1 : Masked. 0 : Unmasked.

|              | Bit7      | Bit6      | Bit5      | Bit4      | Bit3      | Bit2      | Bit1      | Bit0      |
|--------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 0xD0         | MSK_SW7   | MSK_SW6   | MSK_SW5   | MSK_SW4   | MSK_SW3   | MSK_SW2   | MSK_SW1   | MSK_SW0   |
| 0xD1         | MSK_SW15  | MSK_SW14  | MSK_SW13  | MSK_SW12  | MSK_SW11  | MSK_SW10  | MSK_SW9   | MSK_SW8   |
| 0xD2         | MSK_KEYH  | MSK_KEYG  | MSK_KEYF  | MSK_KEYE  | MSK_KEYD  | MSK_KEYC  | MSK_KEYB  | MSK_KEYA  |
| 0xD3         | MSK_KEYP  | MSK_KEYO  | MSK_KEYN  | MSK_KEYM  | MSK_KEYL  | MSK_KEYK  | MSK_KEYJ  | MSK_KEYI  |
| 0xD4         | MSK_KEYX  | MSK_KEYW  | MSK_KEYV  | MSK_KEYU  | MSK_KEYT  | MSK_KEYS  | MSK_KEYR  | MSK_KEYQ  |
| 0xD5         | MSK_KEYAF | MSK_KEYAE | MSK_KEYAD | MSK_KEYAC | MSK_KEYAB | MSK_KEYAA | MSK_KEYZ  | MSK_KEYY  |
| 0xD6         | -         | -         | -         | -         | MSK_KEYAJ | MSK_KEYAI | MSK_KEYAH | MSK_KEYAG |
| R/W          | R/W       | R/W       | R/W       | R/W       | R/W       | R/W       | R/W       | R/W       |
| Initial val. | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0         |

# [0xDF : Mask interrupt]

Name: MSK INTERRUPT

Address: 0xDF

Description: This register is for mask to the interrupt factor. The masked interrupt factor is not shown on the register "Interrupt factor (address 0x10)", so it does not affect to output port INT. 1 : Masked. 0 : Unmasked.

MSK CAL : Mask for Software-calibration finish.

This bit does mask to the interrupt of Software-calibration finish (the bit CAL in the register INTERRUPT(address 0x10)).

MSK\_ERCAL : Mask for Self-calibration finish.

This bit does mask to the interrupt of Self-calibration finish (the bit ERCAL in the register INTERRUPT(address 0x10)).

MSK\_PERCAL : Mask for Periodic calibration finish.

This bit does mask to the interrupt of Periodic calibration finish (the bit PERCAL in the register INTERRUPT(address 0x10)).

|              | Bit7 | Bit6 | Bit5 | Bit4       | Bit3 | Bit2      | Bit1    | Bit0 |
|--------------|------|------|------|------------|------|-----------|---------|------|
| 0xDF         | -    | -    | -    | MSK_PERCAL | -    | MSK_ERCAL | MSK_CAL | -    |
| R/W          | -    | -    | -    | R/W        | -    | R/W       | R/W     | -    |
| Initial val. | -    | -    | -    | 0          | -    | 0         | 0       | -    |

# [0xE0-0xEB : Configuration of PWM]

Name: PWM-0/1/2/3

Address: 0xE0 - 0xEB

- Description: Each of the 4 PWM timers (PWM-0/1/2/3) has 5 parameters. One PWM timer is able to be assigned to one LED port.
  - ① RIS : Rising Period
    - If the setting value is 0x0, PWM function is disabled.
    - If the setting value is from 0x1 to 0xF, Rising Period is about 317[msec] x RIS.
      - $(317 \leq \text{Rising Period} \leq 4755 \text{ [msec]})$ 
        - Update configuration timing :
        - In rising period : Within 3msec.
        - In other periods : Next rising period.
  - 2 FAL : Falling Period
    - If the setting value is 0x0, PWM function is disabled.
    - If the setting value is from 0x1 to 0xF, Falling Period is about 317[msec] x FAL.
    - $(317 \leq \text{Falling Period} \leq 4755 \text{ [msec]})$ 
      - Update configuration timing :
        - In falling period : Within 3msec.
        - In other periods : Next falling period.
  - ③ ON: Lighting-On Period
    - If the setting value is 0x0, LED always lights.

If the setting value is from 0x1 to 0xF, Light-On Period is about 300[msec] x ON.

 $(300 \leq \text{Lighting-On Period} \leq 4500 \text{ [msec]})$ 

In the case of that the LED always lights, the way to turn LED off is to write '0' to the LED port register. And the interrupt of PWM continuous flashing of LED finish is not issued. Falling period is applied.

- Update configuration timing :
  - Next lighting-on period.
- ④ OFF : Lighting-Off Period
  - The settable range :  $0x0 \leq OFF \leq 0xF$

Light-Off Period is about 300[msec] x OFF.

- $(0 \leq \text{Lighting-Off Period} \leq 4500 \text{ [msec]})$
- Update configuration timing :
  - Next lighting-off period.
- 5 REP : Repeat Count
  - If the setting value is 0x0, non repeat.
  - If the setting value is 0xF, unlimited repeat.
  - If the setting value is from 0x1 to 0xE, repeat as many times as the setting value.

When the PWM drive repeat as many times as the setting value, the register interrupt of PWM continuous flashing is set to '1' and I/O port INT is set to "H". Interrupts are cleared by writing '0' to the register clear interrupt of PWM continuous flashing (Address 0xFB). In the case that the setting is "unlimited repeat", interrupts are not released.



Figure 9. PWM waveform

| PWM-0        |        |        |        |        |        |        |        |        |
|--------------|--------|--------|--------|--------|--------|--------|--------|--------|
|              | Bit7   | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
| 0xE0         | FAL[3] | FAL[2] | FAL[1] | FAL[0] | RIS[3] | RIS[2] | RIS[1] | RIS[0] |
| 0xE1         | OFF[3] | OFF[2] | OFF[1] | OFF[0] | ON[3]  | ON[2]  | ON[1]  | ON[0]  |
| 0xE2         | -      | -      | -      | -      | REP[3] | REP[2] | REP[1] | REP[0] |
| R/W          | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    |
| Initial val. | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| PWM-1        | _      |        |        |        |        |        |        |        |
|              | Bit7   | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
| 0xE3         | FAL[3] | FAL[2] | FAL[1] | FAL[0] | RIS[3] | RIS[2] | RIS[1] | RIS[0] |
| 0xE4         | OFF[3] | OFF[2] | OFF[1] | OFF[0] | ON[3]  | ON[2]  | ON[1]  | ON[0]  |
| 0xE5         | -      | -      | -      | -      | REP[3] | REP[2] | REP[1] | REP[0] |
| R/W          | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    |
| Initial val. | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| PWM-2        |        |        |        |        |        |        |        |        |
|              | Bit7   | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
| 0xE6         | FAL[3] | FAL[2] | FAL[1] | FAL[0] | RIS[3] | RIS[2] | RIS[1] | RIS[0] |
| 0xE7         | OFF[3] | OFF[2] | OFF[1] | OFF[0] | ON[3]  | ON[2]  | ON[1]  | ON[0]  |
| 0xE8         | -      | -      | -      | -      | REP[3] | REP[2] | REP[1] | REP[0] |
| R/W          | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    |
| Initial val. | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |
| PWM-3        |        |        |        |        |        |        |        |        |
|              | Bit7   | Bit6   | Bit5   | Bit4   | Bit3   | Bit2   | Bit1   | Bit0   |
| 0xE9         | FAL[3] | FAL[2] | FAL[1] | FAL[0] | RIS[3] | RIS[2] | RIS[1] | RIS[0] |
| 0xEA         | OFF[3] | OFF[2] | OFF[1] | OFF[0] | ON[3]  | ON[2]  | ON[1]  | ON[0]  |
| 0xEB         | -      | -      | -      | -      | REP[3] | REP[2] | REP[1] | REP[0] |
| R/W          | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    | R/W    |
| Initial val. | 0      | 0      | 0      | 0      | 0      | 0      | 0      | 0      |

#### [0xEC : Select PWM port]

PWM EN Name: Address: 0xEC Description:

This register is used to select whether to use PWM function for each LED port. 1 : Use PWM function. 0 : Not use PWM function.

|              | Bit7    | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|--------------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0xEC         | LED7_EN | LED6_EN | LED5_EN | LED4_EN | LED3_EN | LED2_EN | LED1_EN | LED0_EN |
| R/W          | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |
| Initial val. | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

# [0xED-0xEE : Select PWM setting]

PWM\_ASSIGN Name: Address: 0xED – 0xEE

Description: This register is used to set any PWM setting from the four settings to each LED port.

0x0 : Assign PWM-0.

0x1 : Assign PWM-1. 0x2 : Assign PWM-2.

0x3 : Assign PWM-3.

|              | Bit7       | Bit6       | Bit5       | Bit4       | Bit3       | Bit2       | Bit1       | Bit0       |
|--------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 0xED         | LED3_PA[1] | LED3_PA[0] | LED2_PA[1] | LED2_PA[0] | LED1_PA[1] | LED1_PA[0] | LED0_PA[1] | LED0_PA[0] |
| 0xEE         | LED7_PA[1] | LED7_PA[0] | LED6_PA[1] | LED6_PA[0] | LED5_PA[1] | LED5_PA[0] | LED4_PA[1] | LED4_PA[0] |
| R/W          | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        | R/W        |
| Initial val. | 0          | 0          | 0          | 0          | 0          | 0          | 0          | 0          |

# [0xEF : Configure calibration]

LED\_CALIB 0xEF Name:

#### Address:

Description: This register is used to select whether to perform the calibration. The calibration is done by access to any LED port or by periodic calibration.

# LEDCAL : LED calibration :

This register is used to select whether to perform the self-calibration when any bit of the "LED drivers control (0xFA)" register is accessed.

1: Not perform calibration. 0: Perform calibration. (Default)

# **PERCAL : Periodical calibration :**

This register is used to select whether to perform the periodic calibration.

1 : Not perform the periodic calibration. 0 : Perform the periodic calibration. (Default)

#### **PERCALCOND** : Condition of periodical calibration :

This register is used to select the condition to perform the periodic calibration.

1 : Always. 0 : At the setting to "1" to any bit of the "LED drivers control (0xFA)" register. (Default)

#### **PWMCAL:**

In the case that the periodic calibration is active (The "PERCAL" bit is "0"), this register is used to select whether to perform the periodic calibration when the LED port assigned to PWM function is set to active.

1 : Perform periodical calibration regardless of the condition of the LED port assigned to PWM function.

0 : Perform periodical calibration only the LED port assigned to PWM function is set to inactive. (default)

| Condition                                     |        |        |                        |
|-----------------------------------------------|--------|--------|------------------------|
| State of the LED port assignd to PWM function | bit s  | state  | Periodical Calibration |
|                                               | PERCAL | PWMCAL |                        |
|                                               | 0      | 0      | Not Performed          |
| More than one LED port is active              | 0      | 1      | Performed              |
| Note than one LED port is active              | 1      | 0      | Not Performed          |
|                                               | I      | 1      | Not Performed          |
|                                               | 0      | 0      | Performed              |
| All LED port is inactive                      | 0      | 1      | T enormed              |
|                                               | 1      | 0      | Not Performed          |
|                                               | I      | 1      | Not renormed           |

# PERIOD[7:4] :

This register is used to set the interval of the periodic calibration.

The interval of the periodic calibration = About 5[sec] x (PERIOD + 1) (5sec SThe interval 80sec)

|              | Bit7      | Bit6      | Bit5      | Bit4      | Bit3   | Bit2       | Bit1   | Bit0   |
|--------------|-----------|-----------|-----------|-----------|--------|------------|--------|--------|
| 0xEF         | PERIOD[3] | PERIOD[2] | PERIOD[1] | PERIOD[0] | PWMCAL | PERCALCOND | PERCAL | LEDCAL |
| R/W          | R/W       | R/W       | R/W       | R/W       | R/W    | R/W        | R/W    | R/W    |
| Initial val. | 0         | 0         | 0         | 0         | 0      | 0          | 0      | 0      |

# [0xF0 : Clear interrupt]

Name: Address: Description: CLR\_INTERRUPT 0xF0

Interrupt Clear Register

INI : Clear Interrupt of Initialization finish.

Clears the INI interrupt by writing '0' this register.

CAL : Clear Interrupt of Software-calibration finish.

Clears the CAL interrupt by writing '0' this register.

ERCAL : Clear Interrupt of Self-calibration finish.

Clears the ERCAL interrupt by writing '0' this register.

PERCAL : Clear Interrupt of Periodic calibration finish.

Clears the PERCAL interrupt by writing '0' this register.

|              | Bit7 | Bit6 | Bit5 | Bit4   | Bit3 | Bit2  | Bit1 | Bit0 |
|--------------|------|------|------|--------|------|-------|------|------|
| 0xF0         | -    | -    | -    | PERCAL | -    | ERCAL | CAL  | INI  |
| R/W          | -    | -    | -    | R/W    | -    | R/W   | R/W  | R/W  |
| Initial val. | -    | -    | -    | 0      | -    | 0     | 0    | 0    |

#### [0xF1-0xF3 : Clear Switch-ON]

Name: CLR\_DETECT\_ON Address: 0xF1-0xF3

Address: Description:

DETECT\_ON Clear Register. Clears the DETECT\_ON by writing '0' these registers. If you write '1', the operation is invalid. SW 0-15 has each clear bit, cause SW 0-15 supports multiple pressed. The matrix key's DETECT\_ON clear bit is 1bit for MAT, cause the matrix key does not correspond to multiple press.

1 : Invalid. 0 :Clear.

|              | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|--------------|------|------|------|------|------|------|------|------|
| 0xF1         | SW7  | SW6  | SW5  | SW4  | SW3  | SW2  | SW1  | SW0  |
| 0xF2         | SW15 | SW14 | SW13 | SW12 | SW11 | SW10 | SW9  | SW8  |
| 0xF3         | MAT  | -    | -    | -    | -    | -    | -    | -    |
| R/W          | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Initial val. | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

# [0xF4-0xF6 : Clear Switch-OFF]

Name: Address: Description: CLR\_DETECT\_OFF 0xF4-0xF6

DETECT\_OFF Clear Register. Clears the DETECT\_OFF by writing '0' these registers. If you write '1', the operation is invalid. SW 0-15 has each clear bit, cause SW 0-15 supports multiple pressed. The matrix key's DETECT\_OFF clear bit is 1bit for MAT, cause the matrix key does not correspond to multiple press.

1 : Invalid. 0 :Clear.

|              | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|--------------|------|------|------|------|------|------|------|------|
| 0xF4         | SW7  | SW6  | SW5  | SW4  | SW3  | SW2  | SW1  | SW0  |
| 0xF5         | SW15 | SW14 | SW13 | SW12 | SW11 | SW10 | SW9  | SW8  |
| 0xF6         | MAT  | -    | -    | -    | -    | -    | -    | -    |
| R/W          | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Initial val. | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

# [0xF7-0xF9 : Clear continuous touch]

CLR DETECT CONT

Address: 0 Description:

Name:

0xF7-0xF9

DETECT\_CONT Clear Register. Clears the DETECT\_CONT by writing '0' these registers. If you write '1', the operation is invalid. SW 0-15 has each clear bit, cause SW 0-15 supports multiple pressed. The matrix key's DETECT\_CONT clear bit is 1bit for MAT, cause the matrix key does not correspond to multiple press.

1 : Invalid. 0 :Clear.

|              | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|--------------|------|------|------|------|------|------|------|------|
| 0xF7         | SW7  | SW6  | SW5  | SW4  | SW3  | SW2  | SW1  | SW0  |
| 0xF8         | SW15 | SW14 | SW13 | SW12 | SW11 | SW10 | SW9  | SW8  |
| 0xF9         | MAT  | -    | -    | -    | -    | -    | -    | -    |
| R/W          | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Initial val. | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

# [0xFA : LED drivers control]

| Name:        | LED_CH                                    |
|--------------|-------------------------------------------|
| Address:     | 0xFA                                      |
| Description: | This register controls the LED drivers.   |
| -            | 1 : On (High drive). 0 : Off (Low drive). |

|              | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|--------------|------|------|------|------|------|------|------|------|
| 0xFA         | LED7 | LED6 | LED5 | LED4 | LED3 | LED2 | LED1 | LED0 |
| R/W          | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Initial val. | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

# [0xFB : Clear interrupt of PWM continuous flashing]

Name: CLR\_DETECT\_PWM\_FINISH Address: 0xFB

Address: 0 Description: I

ion: DETECT\_PWM\_FINISH Clear Register. Clears the DETECT\_PWM\_FINISH by writing '0' these registers. If you write '1', the operation is invalid. LED 0-7 has each clear bit.

1 : Invalid. 0 :Clear.

|              | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|--------------|------|------|------|------|------|------|------|------|
| 0xFB         | LED7 | LED6 | LED5 | LED4 | LED3 | LED2 | LED1 | LED0 |
| R/W          | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  | R/W  |
| Initial val. | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

# [0xFE : Write register for operation check of CPU]

|             | giotoi ioi |
|-------------|------------|
| Name:       | WACT       |
| Address:    | 0xFE       |
| Description | : This r   |

escription: This register is a write register for operational check of the IC. The value written to this register for operation check is copied to register for operation check (Address is 0x1E). Comparing the write value with the read value is equal, CPU and I/F are operating normally.

|              | Bit7    | Bit6    | Bit5    | Bit4    | Bit3    | Bit2    | Bit1    | Bit0    |
|--------------|---------|---------|---------|---------|---------|---------|---------|---------|
| 0xFE         | WACT[7] | WACT[6] | WACT[5] | WACT[4] | WACT[3] | WACT[2] | WACT[1] | WACT[0] |
| R/W          | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     | R/W     |
| Initial val. | 0       | 0       | 0       | 0       | 0       | 0       | 0       | 0       |

# [0xFF : AFE control]

Name:CNTAddress:0xFFDescription:This register is for control of AFE.

# ACT : Scan Enable :

This bit is the scan enable for sensors. 1:Scan Enable. 0:Scan Disable.

# CAL : Act Software-calibration :

This bit is the act software-calibration. Writing '1' to this bit, the calibration sequence is executed. When software calibration is complete, write '0' to this bit.

# CFG : Enable Configuration Value :

Writing '1' to this bit, the values of Sensor Configuration (Address 0xC0-0xCF), Mask Configuration (Address 0xD0-0xDF), PWM Configuration (Address 0xE0-0xEF), FRCRLS and CALOVF are effective to IC's operation.

# CALMOD : Select Software-calibration mode :

0: All sensors are the targets for software-calibration. If some sensor has the value more than the threshold for "Off $\rightarrow$ On", the sensors are changed to OFF, and DETECT\_OFF registers are enable. (default) 1: Except for the sensor that has the value more than the threshold for "Off $\rightarrow$ On".

# CALOVF : Select Self-calibration mode detected overflow :

When the periodic calibration is active, select to act self-calibration or not to act in the case that the sensor values are over the dynamic range of included ADC.

0: Act self-calibration(default) 1:Non act self-calibration.

# FRCRLS : Select Force OFF at continued touch :

When the continued touch is active, select to force OFF not to do in the case that the max value after detect continued touch minus the current sensor value is more than the threshold for "Off $\rightarrow$ On". 0: Non force OFF(default) 1:Act force OFF.

The continued touch sensor is changed to OFF, and DETECT\_OFF register is enable.

|              | Bit7   | Bit6   | Bit5 | Bit4   | Bit3 | Bit2 | Bit1 | Bit0 |
|--------------|--------|--------|------|--------|------|------|------|------|
| 0xFF         | FRCRLS | CALOVF | -    | CALMOD | -    | CFG  | CAL  | ACT  |
| R/W          | R/W    | R/W    | -    | R/W    | -    | R/W  | R/W  | R/W  |
| Initial val. | 0      | 0      | -    | 0      | -    | 0    | 0    | 0    |

# **Timing Charts**

Host interface

2-wire serial bus. Compatible with I2C protocol. Supports slave mode only. Slave Address = 0x5C (BU21072MUV) Slave Address = 0x5D (BU21078MUV/BU21078FV) Supports Standard-mode (data transfer rate of 100 kbit/s) and Fast-mode (data transfer rate of 400 kbit/s). Supports sequential read.



Figure 10. 2-wire serial bus data format



Figure 11. 2-wire serial bus timing chart

| Deremeter                                        | Current al              | Standard-mode |      | Fast-mode |     | Unit |  |
|--------------------------------------------------|-------------------------|---------------|------|-----------|-----|------|--|
| Parameter                                        | Symbol                  | MIN           | MAX  | MIN       | MAX | Unit |  |
| SCL clock frequency                              | <b>f</b> <sub>SCL</sub> | 0             | 100  | 0         | 400 | kHz  |  |
| Hold time (repeated) START condition             | t <sub>HD;STA</sub>     | 4.0           | -    | 0.6       | -   | usec |  |
| LOW period of the SCL clock                      | t <sub>LOW</sub>        | 4.7           | -    | 1.3       | -   | usec |  |
| HIGH period of the SCL clock                     | t <sub>HIGH</sub>       | 4.0           | -    | 0.6       | -   | usec |  |
| Data hold time                                   | t <sub>HD;DAT</sub>     | 0.1           | 3.45 | 0.1       | 0.9 | usec |  |
| Data set-up time                                 | t <sub>SU;DAT</sub>     | 0.25          | -    | 0.1       | -   | usec |  |
| Set-up time for a repeated START condition       | t <sub>su;sta</sub>     | 4.7           | -    | 0.6       | -   | usec |  |
| Set-up time for STOP condition                   | t <sub>su;sto</sub>     | 4.0           | -    | 0.6       | -   | usec |  |
| Bus free time between a STOP and START condition | t <sub>BUF</sub>        | 4.7           | -    | 1.3       | -   | usec |  |

Byte Write



#### Random Read



#### Sequential Read

| S Slave Address<br>T =0x5C<br>A (BU21072MUV)<br>R =0x5D                    | W A Register Address<br>R C (n)<br>I K<br>T              | A S Slave Address F<br>C T =0x5C E<br>K A (BU21072MUV) A<br>R =0x5D E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | A Read Data<br>C from Register<br>K (Register Address<br>= n) | A<br>C<br>K | A Read Data<br>C from Register<br>K (Register Address<br>= n+x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N S<br>A T<br>C O<br>K P |
|----------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| T (BU21078MUV/FV)<br>S S S S S S S S S<br>A A A A A A A A<br>6 5 4 3 2 1 0 | E<br>R R R R R R R R<br>A A A A A A A A<br>7 6 5 4 3 2 1 | T      (BU21078MUV/FV)        R      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      S      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A      A | R R R R R R R R R<br>D D D D D D D D D<br>7 6 5 4 3 2 1 0     | R<br>D<br>7 | R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R      R | 2)                       |

After scan each sensor in time series, MPU convert to the switch operations from the detected results. The number of sensor ports is difference between BU21072MUV and BU21078MUV / BU21078FV, but one scan rate is the same. One scan rate is about 16msec at typical.

Figure 12. 2-wire serial bus protocol



# Figure 13. Timing chart of scan rate

#### Power on sequence

Power supply pin is VDD only. AVDD and DVDD are supplied by each LDO included BU21072/78MUV, so that have no priority about power on sequence. When VDD reaches to the effective voltage, power-on-reset which initializes the digital block is released.

Power-On-Reset monitoring VDD, so it should be set to proper value of decoupling capacitor and VDD rise time, so as to rise to the proper voltage (DVDD $\rightarrow$ VDD).



Figure 14. Arrangement of external decoupling capacitors

When power-on-reset is released, MPU starts initial sequence. Inform by the INT port to the host that the initialization has been completed. After verify that the initialization has completed, the host will need to resend the command to the IC. In the case that WDTR is released as well, MPU starts initial sequence. If WDTR has released, all registers have been initialized. So the host will need to resend the command to the IC.





Figure 15. Timing chart of power on sequence

Initialize operation

This IC is initialized and all registers are cleared by Power-on reset, WDT time-out reset, and Software reset command. When initialization is complete, the register INI is set to '1' and I/O port INT is set to "H".

After the IC is initialized, write the configuration values to registers. After setting configuration values, the next action is sensor calibration. Set '1' to the registers ACT, CFG and CAL on Address 0xFF, so calibration sequence is performed.

#### IC's initialization after hardware reset

- Power-on-reset
- WDT time-out-reset
- Software reset command

The above actions act hardware reset to the IC. Hardware reset clear the all registers to the default value and initialize MPU. After hardware reset, MPU runs the initial sequence of firmware on Program ROM.



Figure 17. Initialization routine after hardware reset.

| VDD                                        |           |           |          |                                             |                                         |                                                 |
|--------------------------------------------|-----------|-----------|----------|---------------------------------------------|-----------------------------------------|-------------------------------------------------|
| RESET<br>(ActiveLow)                       |           |           |          |                                             |                                         |                                                 |
| CPU RESET<br>(ActiveLow)                   |           |           | About 35 | Dusec                                       |                                         |                                                 |
| Soft calibration                           | IC initia | lization  |          | in serah ahaare                             | Send soft calibration command           | Finish calibration<br>Set to "0" at calibration |
| Sensing enable                             |           |           |          |                                             | Send sensing enable command             |                                                 |
| Interrupt for completion of initialization |           |           |          | Send intterupt clear command for completion | of initialization                       |                                                 |
| Interrupt for completion of calibration    |           |           |          |                                             |                                         |                                                 |
| LED pin                                    | HLZ       | About 200 | Jusec    |                                             | Send interrupt clear command for comple | tion of calibration                             |
| INT pin                                    |           |           |          |                                             | ·                                       |                                                 |

#### Figure 18. Configuration sequence including clear interrupts.

#### Calibration

This IC needs the calibration in the cases as follows.

#### 1.After configuration :

After setting of Sensor Configuration (Address 0xC0-0xCF) and being effective to IC's operation (by writing '1' to CFG), the IC needs the calibration. Set '1' to the registers ACT and CAL on Address 0xFF, so calibration sequence is performed.

#### 2.Detect drift condition :

When the IC detects the drift condition, the IC acts self-calibration. When calibration is complete, the interrupt factor register CAL is set to '1' and I/O port INT is set to "H". When there is the sensor with the sensor value more than the threshold for "Off $\rightarrow$ On", IC does not detect drift condition. The interrupt factor register CAL is maskable by the mask interrupt register CAL. The interrupt factor register CAL is cleared by writing '1' to the interrupt clear register CAL.

#### 3.Detect noise :

When the IC detects the noise, the IC changes the scan rate to not synchronize with the noise, and the IC acts self-calibration. When calibration is complete, the Interrupt factor register CAL is set to '1' and I/O port INT is set to "H". The interrupt factor register CAL is maskable by the mask interrupt register CAL. The interrupt factor register CAL is cleared by writing '1' to the interrupt clear register CAL.

# 4.Detect incorrect operation :

When the finger is on the sensor at the calibration, the sensor base state is with the finger. Without the finger, the sensor value is under the base state value. This abnormal condition is defined to incorrect operation. Detected incorrect operation, the IC acts self-calibration. The interrupt factor register CAL is maskable by the mask interrupt register CAL. The interrupt factor register CAL is cleared by writing '1' to the interrupt clear register CAL.

#### Software-calibration

(1) Write '1' to the Act Software-calibration bit.

(2) Finishing the calibration, the Software-calibration finish bit (CAL on Address0x10) is set to '1' and I/O port INT is set to "H". For next calibration, clear the interrupt.

Operating software-calibration, sensor values and switch result is cleared.

In the act of calibration, sensor values are not changed. So the switching operations are invalid.

If the software-calibration is released at sensing sensors, IC acts calibration at next sensing sensors.



Figure 19. Software calibration sequence

LED calibration

When LED drivers operation is (Host accesses to Address 0xFA), this IC is selectable whether to perform self-calibration. Selecting whether to perform the LED calibration is defined by the configuration for calibration register (LEDCAL on Address0xEF).

If there is the access to the register for LED drivers operation (access to Address 0xFA) when the finger on the sensors. Incorrect operation will be detected at the finger leaving, and so IC will act self-calibration.

#### Periodical calibration

The periodical calibration is to perform self-calibration periodically. This IC is selectable whether to perform periodical calibration. Selecting whether to perform the periodical calibration is defined by the configuration for calibration register (PERCAL on Address0xEF).

The sensor with the finger is not calibrated by the periodical calibration.

Whenever periodical calibration is complete, the interrupt factor register PERCAL is set to '1' and I/O port INT is set to "H". The interrupt factor register PERCAL is maskable by the mask interrupt register PERCAL. The interrupt factor register CAL is cleared by writing '1' to the interrupt clear register PERCAL.

Matrix Switch

The cross points of the sensors which are arranged in a matrix are able to assigned to individual switches. The matrix layout of the sensors is Figure 20.

Each matrix switch has the registers of detected Touch(DETECT\_ON) / Release(DETECT\_OFF) / Hold(DETECT\_COND) operations. Not used matrix switches are maskable. If there are the unstructured matrix switches (in the case that under 6x6 matrix layout), it is must that the unstructured matrix switches is masked. Matrix switches do not support to multi-detect Touch/Release/Hold. The condition of acceptable matrix switch operation is that every sensor's value is under the threshold for "On→Off" and DETECT\_OFF register of matrix switch is cleared. It is must that the matrix switches that are made by the sensor assigned to a simple switch are masked.



| KEYA : KEY[5:0] = 0x00 | KEYM : KEY[5:0] = 0x0C   | KEYY : KEY[5:0] = 0x18    |
|------------------------|--------------------------|---------------------------|
| KEYB : KEY[5:0] = 0x01 | KEYN : KEY[5:0] = 0x0D   | KEYZ : KEY[5:0] = 0x19    |
| KEYC : KEY[5:0] = 0x02 | KEY0 : KEY[5:0] = 0x0E   | KEYAA : KEY[5:0] = 0x1A   |
| KEYD : KEY[5:0] = 0x03 | KEYP : KEY[5:0] = 0x0F   | KEYAB : KEY[5:0] = 0x1B   |
| KEYE : KEY[5:0] = 0x04 | KEYQ : $KEY[5:0] = 0x10$ | KEYAC : $KEY[5:0] = 0x1C$ |
| KEYF : KEY[5:0] = 0x05 | KEYR : KEY[5:0] = 0x11   | KEYAD : $KEY[5:0] = 0x1D$ |
| KEYG : KEY[5:0] = 0x06 | KEYS : $KEY[5:0] = 0x12$ | KEYAE : $KEY[5:0] = 0x1E$ |
| KEYH : KEY[5:0] = 0x07 | KEYT : KEY[5:0] = 0x13   | KEYAF : $KEY[5:0] = 0x1F$ |
| KEYI : KEY[5:0] = 0x08 | KEYU : KEY[5:0] = 0x14   | KEYAG : $KEY[5:0] = 0x20$ |
| KEYJ : KEY[5:0] = 0x09 | KEYV : KEY[5:0] = 0x15   | KEYAH : KEY[5:0] = 0x21   |
| KEYK : KEY[5:0] = 0x0A | KEYW : KEY[5:0] = 0x16   | KEYAI : $KEY[5:0] = 0x22$ |
| KEYL : KEY[5:0] = 0x0B | KEYX : KEY[5:0] = 0x17   | KEYAJ : KEY[5:0] = 0x23   |





Figure 22. Interrupt of matrix switch (2)

INT pin