imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

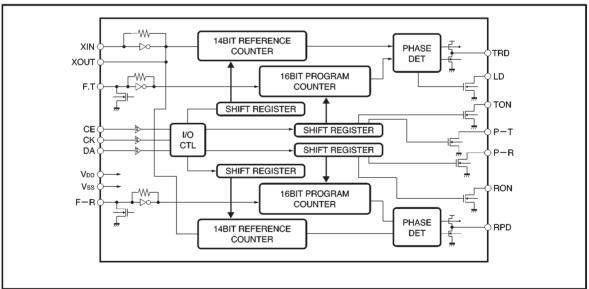
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Communication ICs

Dual PLL frequency synthesizer BU2630F / BU2630FV

The BU2630F/BU2630FV are a CMOS LSI with an internal dual PLL synthesizer.

VCOs for transmission and reception can be controlled independently, and the reference frequency and main counter settings can also be programmed separately. This product is designed for applications involving cordless telephones and communications equipment worldwide.


Applications

Cordless telephones, amateur short wave radios, industrial transceivers, VHF/UHF frequency generators, and others

Features

- 1) Operation possible at up to 80MHz (V_{DD} = 2.5).
- 2) Low current dissipation

- 3) 16-bit main counter.
- 4) Internal 14-bit reference frequency counter.
- 5) Unlock detection possible.
- 6) Four output ports. (open drain)
- 7) Control possible using 3-wire serial input.

Block diagram

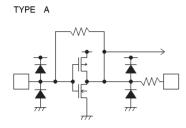
•Absolute maximum ratings (Ta = 25° C)

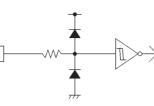
		-			
Parameter		Symbol	Limits	Unit	
Power supply voltage		V _{DD}	-0.3~+7.0	V	
Power dissipation	BU2630F	F-1	500* ¹		
	BU2630FV	Pd	350* ²	mW	
Operating temperature		Topr	-40~+85	Ĵ	
Storage temperature		Tstg	-55~+125	Ĵ	

*1 Reduced by 5.0mW for each increase in Ta of 1°C over 25°C.

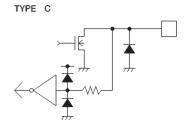
*2 Reduced by 3.5mW for each increase in Ta of 1°C over 25°C.

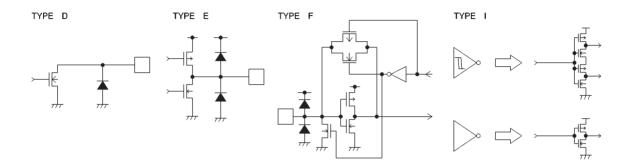
• Recommended operating conditions (Ta = 25° C)


Parameter	Symbol	Min.	Тур.	Max.	Unit	
Power supply voltage	Vdd	2.5	3.0	5.5	V	


Pin descriptions

Pin No.	Pin name	Name	Function	I/O cuircuit	
16	XOUT	Orrestal reconstant			
1	XIN	Crystal resonator	For reference frequency	TYPE A	
2	Vss				
3	RPD	Phase comparator output	This is LO if the locally divided value is higher than the reference frequency, HI if it is lower, and Z if it matches.	TYPE E	
4	P-R	Output port	This is controlled by the input date	TYPE D	
5	RON	Output port	This is controlled by the input data.	ITED	
6	F-R	VCO input	Local input for reception	TYPE F	
7	CE	Chip enable			
8	СК	clock signal	When CE is HIGH, the DA synchronized to the rise of CK is read into the internal shift register, and is latched at the timing of the CE fall.	TYPE B	
9	DA	serial data		1	
10	LD	Unlock output	This goes ON when the PLL is unlocked on the transmission side	TYPE D	
11	F-T	VCO input	Local input for transmission	TYPE F	
12	TON				
13	P-T	Output port	This is controlled by the input data	TYPE D	
14	TPD	Phase comparator output	This is LO if the locally divided value is higher than the reference frequency, HI if it is lower, and Z if it matches.	TYPE E	
15	VDD	Power supply	2.5~5.5V		


ROHM


Input/output circuits

TYPE B

Communication ICs

BU2630F / BU2630FV

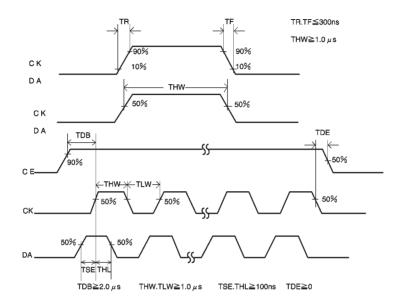
 Electrical characteristics 	(unless otherwise noted, Ta = 25° C, V _{DD} = 3.0V, V _{SS} = 0V)
--	---

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions					
Power supply current 1	DD1	-	2.2	3.0	mA	Dual-system operation	F-TF-R=80MHz, 100mVrms				
Power supply current 2	DD2	-	1.2	2.0	mA	Single-system operation XTAL=10.24MHz					
Power supply current 3	IDD3	-	0.2	0.3	mA	With operation stopped: XTAL = 10.24 MHz					
Input high level voltage 1	VIH1	0.8V _{DD}	_	_	V	CE CK DA					
Input low level voltage 1	VIL1	-	_	0.2Vdd	V	CE CK DA					
Input high level current 1	Пнт	-	_	1.0	μA	CE CK DA VIN=VDD					
Input high level current 2	Іін2	-	0.3	_	μA	XIN VIN=VDD					
Input high level current 3	Іінз	-	5.0	_	μA	F-TF-R VIN=VDD					
Input low level current 1	lı∟ı	-1.0	_	_	μA	CE CK DA VIN=VSS					
Input low level current 2	lı∟2	-	-0.3	-	μA	XIN VIN=VSS					
Input low level current 3	lı∟з	-	-5.0	-	μA	F-TF-R VIN=VSS					
Output low level voltage 1	VoL1	-	0.3	0.5	V	LD TON P-T RON P-F	R lo=1.0mA				
Off level leakage current 1	IOFF1	-	-	1.0	μA	LD TON P-T RON P-F	R Vo=10V				
Output low level voltage 2	Vol2	-	-	0.3	V	F-TF-R lout=0.1mA					
Output high level voltage	Vонз	V _{DD} -50	VDD-1.0	-	mV	TPD RPD IOUT=-0 µA					
Output low level voltage	Vol3	-	1.3	50	mV	TPD RPD lout=0 µ A					
Output high level voltage	Vон4	Vod-100	V _{DD} -40	-	mV	TPD RPD Iout=-100 µ	A				
Output low level voltage	Vol4	-	30	100	mV	TPD RPD Iout=100 µ A					
Off level leakage current 2	IOFF2	-	-	100	nA	TPD RPD VOUT=VDD					
Off level leakage current 3	loff3	-100	-	-	nA	TPD RPD VOUT=VSS					
Internal feedback resistance 1	RF1	-	10	-	MΩ	XIN					
Internal feedback resistance 2	RF2	-	500	-	kΩ	F-TF-R					
Input frequency 1	FIN1	1.0	10.24	16.0	MHz	XIN, sine wave, C coupl	ing				
Input frequency 2	FIN2	1.0	-	20	MHz	F-T F-R, sine wave, C c	oupling*², Vı⊨ 100 mVrms				
Input frequency 3	Fina	50	-	80	MHz	F-T F-R, sine wave, C c	oupling ^{*2} , Vı⊨ 100 mVrms				
Input frequency 4	FIN4	20	-	50	MHz	F-T F-R, sine wave, C c	oupling ^{*2} , Vı⊨ = 50 mVrms				
Input frequency 5*1	FIN5	0.4	_	20	MHz	F-T F-R, sine wave, C coupling*2, VIN =100mVrms					
Maximum input amplitude	FINMax.	-	_	V _{DD} + 0.3	Vp-p	XIN, F-TF-R					
Input capacitance	Cin	-	4	7	PF	F-TF-R					
Minimum pulse width	TW	1.0	_	_	μs	CK, DA					
Input data rise time	TR	_	_	300	ns	CK, DA					
Input data fall time	TF	_	_	300	ns	CE, CK, DA					

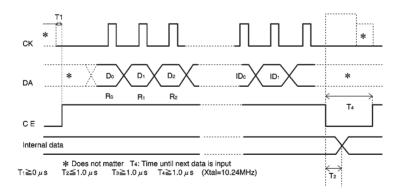
O Not designed for radiation resistance.

*2 Minimum input level at which operation is possible

*1 PS = 1


Divider values which can be set

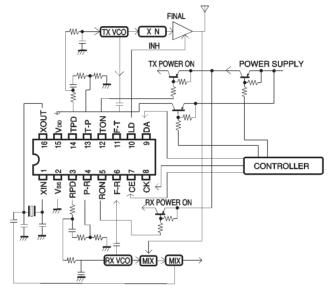
Program divider: PS = 0: 256 to 65535, PS = 1: 3 to 4095


Reference frequency divider: 3 to 16383

Circuit operation

Input data switching characteristics

Input data format

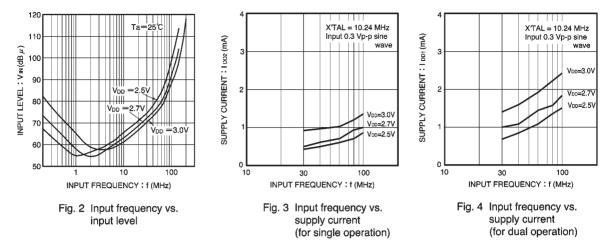

Communication ICs

Programmable divider and control data input: TX side ($ID_0 = 0$, $ID_1 = 0$), RX side ($ID_0 = 1$, $ID_1 = 0$)

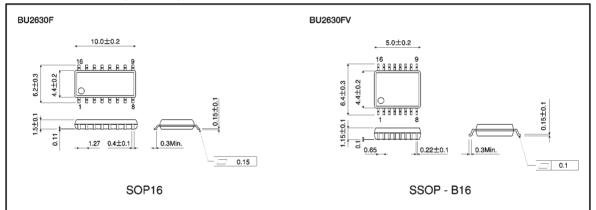
Do	D1	D2	Dз	D4	D₅	D6	D7	Da	D۹	D10	D11	D12	D13	D14	D15
				P-T	TON	OFF	PS	Τo	T1	ID ₀	ID1]			
				(P-R	TON	OFF	PS	To	T1)	1		MSB			
Refere	nce fre	quency o	divider c	lata inpu	ıt: TX si	de (ID₀ ⊧	= 0, ID1	= 1), RX	(side (II	D₀ = 1, II	D1 = 1)				
R₀	Rı	R2	R₃	R₄	R₅	R6	R7	R	R∍	R10	R11	R12	R13	PL	PH
.SB				*	*	LD₀	LD ₁	*	*	ID ₀	ID1]			
* Does	not ma	tter (LD	o and LC	D10 are v	alid on [*]	TX side	only)			1		MSB			
Descrip							• •								
1) Prc	gramn	nable di	vider d	ata: D₀	~ D15										
Do	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12	D13	D14	D15
		transmi : 46.610						eference	freque	ncy of 5.	00 kHz				
0	1	0	1	0	1	, 1	0	0	0	1	0	0	1	0	0
A 6							4			2					
			i				i								
2) Re	ference	e freque	ency da	ta: R₀ ~	~ R13										
Ro	R₁	R2	R₃	R4	R₅	R6	R7	Rŧ	R∍	R 10	R 11	R12	R 13		
		XTAL =						5.00 kH	Ηz						
0	0	0	0	0	0	0	0	0	0	0	1	0	0		
		 D			(3		()		
												:			
,		rt contr		`	P-R) TC	N (ROI	N)								
	•	drain ou drain ou	•	. ,											
	-	mission	-		on side)	: Oper	ation st	opped							
		R) pull-	down :	TPD (R	PD) hig	gh-impe	dance,	LD = C)FF						
5) PS Pro		nable de	evice cl	hange :	No. of	division	ıs = 3 ∼	- 4095							
	Dı	D ₂	D3	D4	D5	D ₆	D7	D8	D9	D10	D11	D12	D13	D14	D15
Do									-						1

- (6) PL, PH, and PD pin control
 - 0 0: PLL operation
 - 1 0 : Forced LO state
 - 0 1 : Forced HI state
 - 1 1 : Forced LO state
- (7) LD_0 , LD_1 , LD pin control (valid only on TX side)
 - 0 0: ON when unlocked (LO)
 - 0 1 : Air pulse output
 - 1 0 : Forced ON state (LO)
 - 1 1 : Forced OFF state (HI)
- (8) Input (00) to test T0 and T1.

Application example



*: Immediately after the power supply is turned on, the various pins remain unstable until data is input.


Fig. 1

Electrical characteristic curves

External dimensions (Units: mm)

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the product described in this document are for reference only. Upon actual use, therefore, please request that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein
 are intended only as illustrations of such devices and not as the specifications for such devices. ROHM
 CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any
 third party's intellectual property rights or other proprietary rights, and further, assumes no liability of
 whatsoever nature in the event of any such infringement, or arising from or connected with or related
 to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, no express or implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document use silicon as a basic material.
 Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of with would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

About Export Control Order in Japan

Products described herein are the objects of controlled goods in Annex 1 (Item 16) of Export Trade Control Order in Japan.

In case of export from Japan, please confirm if it applies to "objective" criteria or an "informed" (by MITI clause) on the basis of "catch all controls for Non-Proliferation of Weapons of Mass Destruction.