mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Technical Note

LVDS Interface ICs 4bit LVDS Transceiver

BU90LV049A

No.09057EAT01

Description

LVDS Interface IC of ROHM "Serializer" "Deserializer" operate from 8MHz to 150MHz wide clock range, and number of bits range is from 35 to 70. Data is transmitted seven times (7X) stream and reduce cable number by 3(1/3) or less. The ROHM's LVDS has low swing mode to be able to expect further low EMI.

Driver and Receiver of 4 bits operate to 250MHz. It can be used for a variety of purposes, home appliances such as LCD-TV, business machines such as decoders, instruments, and medical equipment.

Features

- 1) >500 Mbps (250 MHz) switching rates
- 2) Flow-through pinout simplifies PCB layout.
- 3) 400 ps typical driver channel-to-channel skew
- 4) 150 ps typical receiver channel-to-channel skew
- 5) 3.3V single power supply design
- 6) ± 200 mV and ± 350 mV selectable differential signaling (driver)
- 7) 6mA and 8mA selectable output drive strength (receiver)
- 8) 3-STATE output control
- 9) Internal fail-safe biasing of receiver inputs
- 10) High impedance on LVDS outputs on power down
- 11) Conforms to TIA/EIA-644-A LVDS Standard
- 12) Industrial operating temperature range (-40°C to +85°C)

Applications

Car Navigation System Copier Digital TV (Signal System) FA equipment Medical equipment Vending machine, Ticket vending machine

Precaution

This chip is not designed to protect from radioactivity.

•Absolute maximum ratings

Itom	Symbol	Valu	Linit	
Item	Symbol	Min.	Max.	Unit
Supply voltage	V _{CC}	-0.3	4.0	V
Input voltage	V _{IN}	-0.3	V _{CC} +0.3	V
Output voltage	V _{OUT}	-0.3	V _{CC} +0.3	V
Storage temperature range	Tstg	-55	150	°C

Package Power

Package	PD(mW)	DERATING(mW/°C) ※1
SSOP-B16	400	4.0
	450 ^{*2}	4.5 ^{*2}

‰1 At temperature Ta $> 25^{\circ}$ C

 $\bigstar 2$ Package power when mounting on the PCB board.

The size of PCB board $:70 \times 70 \times 1.6 \text{ (mm}^3)$

The material of PCB board :The FR4 glass epoxy board.(3% or less copper foil area)

Operating conditions

ltom	Symbol	Value			Linit	Condition	
item	Symbol	Min.	Тур.	Max.	Unit	Condition	
Supply voltage	Vcc	3.0	3.3	3.6	V		
Operating temperature range	Topr	-40	25	85	°C		

•Electrical characteristics

Symbol	Parameter	Conditions	Pin	Min	Тур	Max	Units
LVCMOS	S Input DC Specification (Driver I	nputs, ENABLE Pins)					
V _{IH}	Input High Voltage			$V_{cc} \times 0.8$	_	V _{cc}	V
V _{IL}	Input Low Voltage		D_{IN}	GND	_	$V_{cc} \times 0.2$	V
I	Input Current	$V_{IN} = 0V \text{ or } V_{CC}$	$V_{\rm IN} = 0V \text{ or } V_{\rm CC}$		_	+10	μA
V _{cL}	Input Clamp Voltage	V _{cL} = -18mA	02	-1.5	-0.8	_	V
LVDS O	utput DC Specification (Driver Ou	itput)					<u> </u>
V _{od1}	Differential Output Voltage	SL= GND, $R_L = 100 \Omega$ (Figure 4)	D _{OUT-}	250	350	450	mV
	Differential Output Voltage	SL= V_{CC} , R_{L} = 100 Ω (Figure 4)	D _{OUT+}	120	200	300	mV
ΔV_{OD}	Change in Magnitude of V _{oD} for Complementary Output States			_	1	35	mV
V _{os}	Offset Voltage	$SL = V_{CC}$ or GND, $P_{cc} = 100 \Omega$ (Figure 4)		1.125	1.25	1.375	V
ΔV_{os}	Change in Magnitude of Vos for Complementary Output States	- N _L - 100 sz (Figure 4)		-	1	25	mV
I _{os}	Output Short Circuit Current	ENABLED, $D_{IN} = V_{CC}, D_{OUT+} = 0V \text{ or}$ $D_{IN} = GND, D_{OUT-} = 0V$		-	-5.4	-9.0	mA
I _{osd}	Differential Output Short Circuit Current	ENABLED, V _{od} = 0V		-	-5.4	-9.0	mA
I _{oz}	Output 3-STATE Current	EN = 0V and SL = V_{cc} V_{out} = 0V or V_{cc}		-10	1	+10	μA
LVDS In	put DC Specification (Receiver In	puts)					
V _{TH}	Differential Input High Threshold	V _{CM} = 1.2V, 0.05V, 2.35V	R_{IN^+}	_	_	100	mV
V _{TL}	Differential Input Low Threshold	-	R_{IN^-}	-100	_	-	mV
V _{CMR}	Common-Mode Voltage Range	V_{ID} = 200mV pk to pk		0.1	_	2.3	V
I _{IN}	Input Current	V _{IN} = 0 or Vcc		-20	_	+20	μA
LVCMOS	S Output DC Specification (Recei	ver Outputs)	-				
V _{OH1}	Output High Voltage	$I_{OH} = -8 \text{ mA}, V_{ID} = +200 \text{ mV},$ SL=GND		V _{cc} - 0.4	-	-	v
V _{OH2}	Output High Voltage	$I_{OH} = -6 \text{ mA}, \text{ V}_{ID} = +200 \text{ mV},$ SL = V _{CC}		V _{cc} - 0.4	-	_	
V _{OL1}	Output Low Voltage	$I_{OL} = 8 \text{ mA}, V_{ID} = -200 \text{ mV},$ SL=GND	R _{OUT}	_	-	0.4	V
V _{OL2}	Output Low Voltage	$I_{OL} = 6 \text{ mA}, V_{ID} = -200 \text{ mV},$ SL = V _{CC}		_	-	0.4	
I _{oz}	Output 3-STATE Current	Disabled, V _{OUT} = 0V or V _{CC}	1	-10	1	+10	μA
General	DC Specifications		-				
I _{cc}	Power Supply Current	EN = Vcc and SL = 0V	V	-	12	-	mA
I _{ccz}	TRI-State Supply Current	EN = 0V and SL = 0V	• cc	-	2	-	mA

•Switching Characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Units
LVDS Out	outs (Driver Outputs)					
t _{PHLD}	Differential Propagation Delay High to Low	$R_L = 100 \Omega$, $C_L = 15 pF$	0.5	1.7	2.8	ns
t _{PLHD}	Differential Propagation Delay Low to High	(Figure 5 and Figure 6)	0.5	1.7	2.8	ns
t _{skD1}	Differential Pulse Skew t _{PHLD} - t _{PLHD}		0	0.3	0.4	ns
t _{skd2}	Differential Channel-to-Channel Skew		0	0.4	0.5	ns
t _{skD3}	Differential Part to Part Skew		0	-	1.0	ns
t _{TLH}	Rise Time		-	0.5	1.5	ns
t _{THL}	Fall Time		-	0.5	1.5	ns
t _{PHZ}	Disable Time High to Z	$R_L = 100 \Omega$, $C_L = 15 pF$	-	2	5	ns
t _{PLZ}	Disable Time Low to Z	(Figure 7 and Figure8)	-	2	5	ns
t _{PZH}	Enable Time Z to High		-	3	7	ns
t _{PZL}	Enable Time Z to Low		-	3	7	ns
f _{Max}	Maximum Operating Frequency		250	-	-	MHz
LVCMOS	Outputs (Receiver Outputs)					
t _{PHL}	Propagation Delay High to Low	C _L = 15pF V _{ID} = 200mV	1.2	2.0	3.7	ns
t _{PLH}	Propagation Delay Low to High	(Figure 9 and Figure 10)	1.2	1.9	3.7	ns
t _{sK1}	Pulse Skew t _{PHLD} - t _{PLHD}		0	0.1	0.4	ns
t _{sk2}	Channel-to-Channel Skew		0	0.15	0.5	ns
t _{sk3}	Part to Part Skew		_	-	1.0	ns
t _{TLH}	Rise Time		-	0.5	1.5	ns
t _{THL}	Fall Time		-	0.5	1.5	ns
t _{PHZ}	Disable Time High to Z	$R_L = 2k \Omega$	-	8	14	ns
t _{PLZ}	Disable Time Low to Z	С _L = 15рF	-	8	14	ns
t _{PZH}	Enable Time Z to High	(Figure 11 and Figure 12)	-	3	14	ns
t _{PZL}	Enable Time Z to Low		-	9	14	ns
f _{Max}	Maximum Operating Frequency		250	_	-	MHz

Block diagram

●SSOP-B16 Package Outline and Specification

(UNIT : mm)

Figure 2. SSOP-B16 Package Outline and Specification

Pin Configuration

Figure 3. Pin Diagram (Top View)

Pin Description

Pin Name	Pin No.	Туре	Descriptions	
DIN	10, 11	LVCMOS In	Driver input pin, LVCMOS levels.	
DOUT+	6, 7	LVDS Out	Non-inverting driver output pin, LVDS levels.	
DOUT-	5, 8	LVDS Out	Inverting driver output pin, LVDS levels.	
RIN+	2, 3	LVDS In	Non-inverting receiver input pin, LVDS levels.	
RIN-	1, 4	LVDS In	Inverting receiver input pin, LVDS levels.	
ROUT	14, 15	LVCMOS Out	Receiver output pin, LVCMOS levels.	
SL	9	LVCMOS In	Drive strength and Swing Level select pin : When SL is low or open, Rout set 8mA mode a the driver is normal swing level (350mV). When SL is high, Rout set 6mA mode and t driver is reduce swing level (200mV).	
EN	16	LVCMOS In	Enable pin: When EN is Low or open, the receiver and driver are disabled. When EN is high, the receiver and driver are enabled.	
VCC	12	Power	Power supply pin, $+3.3V \pm 0.3V$.	
GND	13	GND	Ground pin.	

Function Description

■Driver Truth Table

		INPUT	OUTF	PUTS	Swing Loval
EN	SL	Din	Dout+	Dout-	Swing Level
Ц	L or Open	L	L	Н	350m\/
	L of Open	Н	Н	L	550117
Ц	Ц	L	L	Н	200m\/
L1	, TI	Н	Н	L	200111
All other com EN, SL	binations of inputs	х	Z	Z	

■Receiver Truth Table

		INPUT	OUTPUTS	Drive
EN	SL	$R_{IN+} - R_{IN-}$	R _{OUT}	Strength
		$VID \ge 0V$	Н	
		$VID \leq -0.1V$	L	
H L or Ope	L or Open	Full Fail-safe OPEN/SHORT or Terminated	Н	8mA
		$VID \ge 0V$	Н	
		$VID \leq -0.1V$	L	
Н	Н	Full Fail-safe OPEN/SHORT or Terminated	Н	6mA
All other com EN, SL	binations of inputs	Х	Z	

Parameter Measurement Information

Figure 4. Driver VOD and VOS Test Circuit

Figure 5. Driver Propagation Delay and Transition Time Test Circuit

Figure 6. Driver Propagation Delay and Transition Time Waveforms

Figure 7. Driver 3-STATE Delay Test Circuit

Figure 8. Driver 3-STATE Delay Waveform

Figure 9. Receiver Propagation Delay and Transition Time Test Circuit

Figure 10. Receiver Propagation Delay and Transition Time Waveforms

Figure 11. Receiver 3-STATE Delay Test Circuit

Figure 12. Receiver 3-STATE Delay Waveforms

•Typical Application

Figure 14. Driver Output Levels

BU90LV049A

Ordering part number

SSOP-B16

	Notes
No cop consen	ying or reproduction of this document, in part or in whole, is permitted without the tof ROHM Co.,Ltd.
The cor	ntent specified herein is subject to change for improvement without notice.
The cor	ntent specified herein is for the purpose of introducing ROHM's products (hereinafte
"Produc	cts"). If you wish to use any such Product, please be sure to refer to the specifications
which c	an be obtained from ROHM upon request.
Exampl	es of application circuits, circuit constants and any other information contained hereir
illustrate	e the standard usage and operations of the Products. The peripheral conditions mus
be take	n into account when designing circuits for mass production.
Great c	are was taken in ensuring the accuracy of the information specified in this document
Howeve	er, should you incur any damage arising from any inaccuracy or misprint of such
informa	tion, ROHM shall bear no responsibility for such damage.
The tec	hnical information specified herein is intended only to show the typical functions of and
example	es of application circuits for the Products. ROHM does not grant you, explicitly o
implicitl	y, any license to use or exercise intellectual property or other rights held by ROHM and
other pa	arties. ROHM shall bear no responsibility whatsoever for any dispute arising from the
use of s	such technical information.
The Pro	oducts specified in this document are intended to be used with general-use electronic
equipm	ent or devices (such as audio visual equipment, office-automation equipment, commu-
nicatior	a devices, electronic appliances and amusement devices).
The Pro	ducts specified in this document are not designed to be radiation tolerant.
While F Product	ROHM always makes efforts to enhance the quality and reliability of its Products, a t may fail or malfunction for a variety of reasons.
Please	be sure to implement in your equipment using the Products safety measures to guard
against	the possibility of physical injury, fire or any other damage caused in the event of the
failure o	of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM
shall be	ar no responsibility whatsoever for your use of any Product outside of the prescribed
scope o	or not in accordance with the instruction manual.
The Pro	boducts are not designed or manufactured to be used with any equipment, device o
system	which requires an extremely high level of reliability the failure or malfunction of which
may res	sult in a direct threat to human life or create a risk of human injury (such as a medica
instrum	ent, transportation equipment, aerospace machinery, nuclear-reactor controller
fuel-cor	ntroller or other safety device). ROHM shall bear no responsibility in any way for use o
any of t	he Products for the above special purposes. If a Product is intended to be used for any
such sp	precial purpose, please contact a ROHM sales representative before purchasing.
If you in be cont	ntend to export or ship overseas any Product or technology specified herein that may prolled under the Foreign Exchange and the Foreign Trade Law, you will be required to a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/