mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Low Duty LCD Segment Driver for Automotive Application

BU91796FS-M MAX 80 Segments (SEG20×COM4)

General Description

BU91796FS-M is a 1/4 duty general-purpose LCD driver that can be used for automotive applications and can drive up to 80 LCD Segments.

It can support operating temperature of up to $+105^{\circ}$ C and qualified for AEC-Q100 Grade2, as required for automotive applications.

Features

- AEC-Q100 Qualified (Note)
- Integrated RAM for Display Data (DDRAM): 20 x 4 bit (Max 80 Segment)
- LCD Drive Output: 4 Common Output, Max 20 Segment Output
- Integrated Buffer AMP for LCD Driving
- Integrated Duriel Anil Tor Lo
 Integrated Oscillator Circuit
- Integrated Oscillator Oricul
 No External Components
- Low Power Consumption Design (Note) Grade 2

Applications

- Instrument Clusters
- Climate Controls
- Car Audios / Radios
- Metering
- White Goods
- Healthcare Products
- Battery Operated Applications

etc.

Key Specifications

- Supply Voltage Range: +2.5V to +6.0V
- Operating Temperature Range: -40°C to +105°C
- Max Segments:
- Display Duty:
- Bias:
 - Bias: 1/3 Interface: 2wire Serial Interface

20110 001

Special Characteristics ESD(HBM):

±2000V ±100mA

80Segments

1/4

Latch-up current:

Package

W (Typ) x D (Typ) x H (Max)

13.6mm x 7.8mm x 2.01mm

Internal Clock Mode

Figure 1. Typical Application Circuit

OProduct structure : Silicon monolithic integrated circuit OThis product has no designed protection against radioactive rays.

Block Diagram / Pin Configuration / Pin Description

Figure 2. Block Diagram

Figure 3. Pin Configuration (TOP VIEW)

Pin Name	Pin No.	I/O	Function	Handling when unused
TEST1	26	Ι	Test input (ROHM use only) Must be connected to VSS	VSS
TEST2	27	I	POR enable setting VDD: POR disenable ^(Note) VSS: POR enable	VSS
OSCIN	28	Ι	External clock input External clock and Internal clock can be selected by command Must be connected to VSS when using internal oscillator	VSS
SDA	30	I/O	Serial data in-out terminal	-
SCL	29	I	Serial clock terminal	-
VSS	25	-	Ground	-
VDD	24	-	Power supply	-
VLCD	23	-	Power supply for LCD driving	-
SEG0 to SEG19	31,32, 1 to 18	0	SEGMENT output for LCD driving	OPEN
COM0 to COM3	19 to 22	0	COMMON output for LCD driving	OPEN

Table 2. Pin Description

(Note) This function is guaranteed by design, not tested in production process. Software Reset is necessary to initialize IC in case of TEST2=VDD.

Absolute Maximum Ratings (VSS=0V)

Parameter	Symbol	Ratings	Unit	Remarks
Maximum Voltage1	VDD	-0.5 to +7.0	V	Power Supply
Maximum Voltage2	VLCD	-0.5 to VDD	V	LCD Drive Voltage
Power Dissipation	Pd	0.64 ^(Note1)	W	
Input Voltage Range	V _{IN}	-0.5 to VDD+0.5	V	
Operational Temperature Range	Topr	-40 to +105	°C	
Storage Temperature Range	Tstg	-55 to +125	°C	

(Note1) Delete by 6.4mW/°C when operating above Ta=25°C (when mounted in ROHM's standard board). **Caution:** Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Recommended Operating Conditions (Ta=-40°C to +105°C, VSS=0V)

Paramotor	Symbol		Ratings		Lloit	Pomarka
Falameter	Symbol	Min	Тур	Max	Unit	nemans
Power Supply Voltage1	VDD	2.5	-	6.0	V	Power Supply
Power Supply Voltage2	VLCD	0	-	VDD-2.4	V	LCD Drive Voltage, VDD-VLCD $\ge 2.4V$

Electrical Characteristics

DC Characteristics (VDD=2.5V to 6.0V, VLCD=0V, VSS=0V, Ta=-40°C to +105°C, unless otherwise specified)

Baramat	or	Symbol		Limits		Lloit	Conditions
Faramet	ei	Symbol	Min	Тур	Max	Unit	Conditions
"H" Level Input Vo	ltage	VIH	0.7VDD	-	VDD	V	SDA,SCL,OSCIN
"L" Level Input Vo	ltage	VIL	VSS	-	0.3VDD	V	SDA,SCL,OSCIN
"H" Level Input Cu	urrent	Ін	-	-	1	μA	SDA,SCL,OSCIN ^(Note2) ,TEST2
"L" Level Input Cu	rrent	IIL	-1	-	-	μA	SDA,SCL,OSCIN,TEST2
SDA "L" Level Out	tput Voltage	Vol_sda	0	-	0.4	V	lload = 3mA
LCD Driver On	SEG	Ron	-	3	-	kΩ	llood 11014
Resistance	COM	Ron	-	3	-	kΩ	Ποαd=±ΤυμΑ
VLCD Supply Volt	age	VLCD	0	-	VDD-2.4	V	VDD-VLCD≥2.4V
Standby Current		IDD1	-	-	5	μA	Display off, Oscillation off
Power Consumpti	on	IDD2	-	12.5	30	μA	VDD=3.3V, VLCD=0V, Ta=25°C Power save mode1, FR=71Hz 1/3 bias, Frame inverse

(Note2) For external clock mode only.

Electrical Characteristics – continued

Oscillation Characteristics (VDD=2.5V to 6.0V, VLCD=0V, VSS=0V, Ta=-40°C to +105°C, unless otherwise specified)

Paramotor	Symbol		Limits		Linit	Conditions
Falameter	Symbol	Min	Тур	Max	Unit	Conditions
Frame Frequency1	f _{CLK1}	56	80	112	Hz	FR = 80Hz setting, VDD=2.5V to 6.0V, Ta=-40°C to +105°C
Frame Frequency2	fclk2	70	80	90	Hz	FR = 80Hz setting, VDD=3.3V, Ta=25°C
Frame Frequency3	f _{CLK3}	77.5	87.5	97.5	Hz	FR = 80Hz setting, VDD=5.0V, Ta=25°C
Frame Frequency4	f _{CLK4}	67.5	87.5	108	Hz	FR = 80Hz setting, VDD=5.0V, Ta=-40°C to +105°C
External Clock Rise Time	tr	-	-	0.3	μs	
External Clock Fall Time	tf	-	-	0.3	μs	External clock mode (OSCINI) (Note)
External Frequency	f exclk	15	-	300	KHz	
External Clock Duty	t dty	30	50	70	%	

(Note) <Frame frequency calculation at external clock mode>

DISCTL 80HZ setting: Frame frequency [Hz] = external clock [Hz] / 512 DISCTL 71HZ setting: Frame frequency [Hz] = external clock [Hz] / 576

DISCTL 64HZ setting: Frame frequency [Hz] = external clock [Hz] / 648 DISCTL 53HZ setting: Frame frequency [Hz] = external clock [Hz] / 768

Figure 4. Frame Frequency Typical Temperature Characteristics

Electrical Characteristics - continued

MPU interface Characteristics (VDD=2.5V to 6.0V, VLCD=0V, VSS=0V, Ta=-40°C to +105°C, unless otherwise specified)

Parameter	Symbol		Limits		Lloit	Conditions
Faidmetei	Symbol	Min	Тур	Max	Unit	Conditions
Input Rise Time	tr	-	-	0.3	μs	
Input Fall Time	tf	-	-	0.3	μs	
SCL Cycle Time	tscyc	2.5	-	-	μs	
"H" SCL Pulse Width	t _{SHW}	0.6	-	-	μs	
"L" SCL Pulse Width	tslw	1.3	-	-	μs	
SDA Setup Time	tsds	100	-	-	ns	
SDA Hold Time	t sdh	100	-	-	ns	
Buss Free Time	t _{BUF}	1.3	-	-	μs	
START Condition Hold Time	thd;sta	0.6	-	-	μs	
START Condition Setup Time	tsu;sta	0.6	-	-	μs	
STOP Condition Setup Time	tsu;sто	0.6	-	-	μs	

Figure 5. Interface Timing

VDD 🖾 VDD 🖾 本 本 VLCD 本 VSS \boxtimes vss 🖂 SCL SDA 🖂 木 本 ₩ VSS 🖾 VSS 🖾 VDD 🖂 VDD 🖂 TEST1 ⊠ TEST2 🖾 Δ VSS 🖂 VSS 🖂 VDD \boxtimes VDD 🖂 4 SEG/COM 不 4 vss 🖾 \boxtimes VSS

I/O Equivalence Circuit

VDD

Application Example

External Clock Mode

Figure 7. Example of Application Circuit

Functional Descriptions

Command / Data Transfer Method

BU91796FS-M is controlled by 2wire signal (SDA, SCL).

Figure 8. 2 wire Command/Data Transfer Format

It is necessary to generate START and STOP condition when sending Command or Display Data through this 2 wire serial interface.

Figure 9. Interface Protcol

Slave Address = "01111100" : Write Mode

The following procedure shows how to transfer Command and Display Data.

- (1) Generate "START condition".
- (2) Issue Slave Address.
- (3) Transfer Command and Display Data.
- (4) Generate "STOP condition"

Acknowledge (ACK)

Data format is comprised of 8 bits, Acknowledge bit is returned after sending 8-bit data.

After the transfer of 8-bit data (Slave Address, Command, Display Data), release the SDA line at the falling edge of the 8th clock. The SDA line is then pulled "Low" until the falling edge of the 9th clock SCL.

(Output cannot be pulled "High" because of open drain NMOS).

If acknowledge function is not required, keep SDA line at "Low" level from 8th falling edge to 9th falling edge of SCL.

Command Transfer Method

Issue Slave Address ("01111100") after generating "START condition". The 1st byte after Slave Address always becomes command input. MSB ("command or data judge bit") of command decide to next data is Command or Display Data. When set "command or data judge bit"='1', next byte will be command. When set "command or data judge bit"='0', next byte data is Display Data.

s s	Slave Address	A	1	Command	А	1	Command	A	1	Command	А	0	Command	A	Display Data		Р
-----	---------------	---	---	---------	---	---	---------	---	---	---------	---	---	---------	---	--------------	--	---

It cannot accept input command once it enters into Display Data transfer state.

In order to input command again it is necessary to generate "START condition".

If "START condition" or "STOP condition" is sent in the middle of command transmission, command will be cancelled.

If Slave Address is continuously sent following "START condition", it remains in command input state. "Slave Address" must be sent right after the "START condition".

When Slave Address cannot be recognized in the first data transmission, no Acknowledge bit is generated and next transmission will be invalid. When data is invalid status, if "START condition" is transmitted again, it will return to valid status.

Consider the MPU interface characteristic such as Input rise time and Setup/Hold time when transferring command and data (Refer to MPU Interface).

Write Display and Transfer Method

BU91796FS-M has Display Data RAM (DDRAM) of 20x4=80bit. The relationship between data input and Display Data, DDRAM Data and address are as follows:

	Slave Address			Command																				
S	01111100	A	0	0000000	A	а	b	с	d	е	f	g	h	A	i	j	k	I	m	n	0	р	A	 Р
						_,	। ► Dis	ı spla	ı ay D	i ata	1	1	1			1	1	1	1	1	1	1		

8-bit data is stored in DDRAM. ADSET command specifies the address to be written, and address is automatically incremented in every 4-bit data.

Data can be continuously written in DDRAM by transmitting data continuously.

When RAM data is written successively, after writing RAM data to 13h(SEG19), the address is returned to 00h(SEG0) by the auto-increment function

Display Data is written to DDRAM every 4-bit data. No need to wait for ACK bit to complete data transfer.

Oscillator

The clock signals for logic and analog circuit can be generated from internal oscillator or external clock. If internal oscillator circuit is used, OSCIN must be connected to VSS level. When using external clock mode, input external clock from OSCIN terminal after ICSET command setting.

Figure 11. Internal Clock Mode

Figure 12. External Clock Mode

LCD Driver Bias Circuit

BU91796FS-M generates LCD driving voltage with on-chip Buffer AMP. And it can drive LCD at low power consumption. Line or frame inversion can be set by DISCTL command. Refer to the "LCD driving waveform" for each LCD bias setting.

Blink Timing Generator

 $\begin{array}{l} \mathsf{BU91796FS-M} \text{ has Blink function.} \\ \mathsf{Blink mode is asserted by BLKCTL command.} \\ \mathsf{The Blink frequency varies depending on } f_{\mathsf{CLK}} \text{ characteristics at internal clock mode.} \\ \mathsf{Refer to Oscillation Characteristics for } f_{\mathsf{CLK}}. \end{array}$

Reset Initialize Condition

Initial condition after executing Software Reset is as follows. -Display is OFF. -DDRAM address is initialized (DDRAM Data is not initialized). Refer to Command Description for initial value of registers.

Command / Function List

Description List of Command / Function

No.	Command	Function
1	Set IC Operation (ICSET)	Software reset, internal/external clock setting
2	Display Control (DISCTL)	Frame frequency, Power save mode setting
3	Address Set (ADSET)	DDRAM address setting (00h to 13h)
4	Mode Set (MODESET)	Display on/off setting, 1/3bias setting
5	Blink Control (BLKCTL)	Blink off/0.5/1.0/2.0Hz blink setting
6	All Pixel Control (APCTL)	All pixels on/off during DISPON

Detailed Command Description

D7 (MSB) is a command or data judgment bit. Refer to Command and data transfer method.

- C: 0: Next byte is RAM write data.
 - 1: Next byte is command.

Set IC Operation (ICSET)

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0
С	1	1	0	1	*	P1	P0
(* : Don't	care)						

Set software reset execution.

Setup	P1
No operation	0
Software Reset Execute	1

When "Software Reset" is executed, BU91796FS-M is reset to initial condition. (Refer to Reset initialize condition)

Don't set Software Reset (P1) with P0 at the same time.

Set oscillator mode

Setup	P0	Reset initialize condition
Internal clock	0	0
External clock	1	-

Internal clock mode: OSCIN must be connected to VSS level.

External clock mode: Input external clock from OSCIN terminal.

<Frame frequency Calculation at external clock mode>

DISCTL 80Hz setting:	Frame frequency [Hz] = external clock [Hz] / 512
DISCTL 71Hz setting:	Frame frequency [Hz] = external clock [Hz] / 576
DISCTL 64Hz setting:	Frame frequency [Hz] = external clock [Hz] / 648
DISCTL 53Hz setting:	Frame frequency [Hz] = external clock [Hz] / 768

Command		et X	
OSCIN_EN (Internal signal)	Internal clock mode	External clock mode	
Internal oscillation (Internal signal)			
External clock (OSCIN)			\Box

Figure 13. OSC MODE Switch Timing

Display Control (DISCTL)

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0
С	0	1	P4	P3	P2	P1	P0

Set Power save mode FR.

Setup	P4	P3	Reset initialize condition
Normal mode (80Hz)	0	0	0
Power save mode 1 (71Hz)	0	1	-
Power save mode 2 (64Hz)	1	0	-
Power save mode 3 (53Hz)	1	1	-

Power consumption is reduced in the following order:

Normal mode > Power save mode1 > Power save mode 2 > Power save mode 3.

Set LCD drive waveform.

Setup	P2	Reset initialize condition
Line inversion	0	0
Frame inversion	1	-

Power consumption is reduced in the following order:

Line inversion > Frame inversion

Typically, when driving large capacitance LCD, Line inversion will increase the influence of crosstalk. Regarding driving waveform, refer to LCD driving waveform.

Set Power save mode SR.

Setup	P1	P0	Reset initialize condition		
Power save mode 1	0	0	-		
Power save mode 2	0	1	-		
Normal mode	1	0	0		
High power mode	1	1	-		

Power consumption is increased in the following order:

Power save mode 1 < Power save mode 2 < Normal mode < High power mode Use VDD- VLCD \ge 3.0V in High power mode condition.

(Reference current consumption data)

Setup	Current consumption			
Power save mode 1	×0.5			
Power save mode 2	×0.67			
Normal mode	×1.0			
High power mode	×1.8			

The data above is for reference only. Actual consumption depends on Panel load.

Address Set (ADSET)

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0
С	0	0	P4	P3	P2	P1	P0

The range of address can be set from 00000 to 10011(bin). Don't set out of range address, otherwise address will be set 00000.

Mode Set (MODESET)

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0
С	1	0	*	P3	0	*	*

(* : Don't care)

Set display off and on.

Setup	P3	Reset initialize condition
Display off (DISPOFF)	0	0
Display on (DISPON)	1	-

Display off : Regardless of DDRAM Data, all SEGMENT and COMMON output will be stopped after 1frame of OFF data write. Display off mode will be disabled after Display on command.

Display on : SEGMENT and COMMON output will be active and start to read the Display Data from DDRAM.

Set 1/3 bias level

Setup	P2	Reset initialize condition
1/3 Bias	0	0
Prohibit	1	-

Refer to LCD driving waveform.

Blink Control (BLKCTL)

MSB D7	D6	D5	D4	D3	D2	D1	LSB D0
С	1	1	1	0	*	P1	P0
(*:Don'	t care)						

Set I	blink mode.			
	Blink mode (Hz)	P1	P0	Reset initialize condition
	OFF	0	0	0
	0.5	0	1	-
	1.0	1	0	-
	2.0	1	1	-

The Blink frequency varies depending on f_{CLK} characteristics at internal clock mode. Refer to Oscillation Characteristics for f_{CLK} .

All Pixel Control (APCTL)

MSB							LSB	
D7	D6	D5	D4	D3	D2	D1	D0	
С	1	1	1	1	1	P1	P0	

All display set ON, OFF

Setup	P1	Reset initialize condition
Normal	0	0
All pixel on (APON)	1	-

Setup	P0	Reset initialize condition
Normal	0	0
All pixel off (APOFF)	1	-

All pixels on: All pixels are ON regardless of DDRAM Data.

All pixels off: All pixels are OFF regardless of DDRAM Data.

This command is valid in Display on status. The data of DDRAM is not changed by this command. If set both P1 and P0 ="1", APOFF will be selected.

LCD Driving Waveform

Figure 15. LCD Waveform at Frame Inversion (1/3bias)

Example of Display Data

If LCD layout pattern is like Figure 16 and Figure 17, and display pattern is like Figure 18, Display Data will be shown as below.

Figure 16. Example COM Line Pattern

Figure 17. Example SEG Line Pattern

Figure 18. Example Display Pattern

<DDRAM Data mapping in Figure 18 display pattern>

		S E G 0	S E G 1	S E G 2	S E G 3	S E G 4	S E G 5	S E G 6	S E G 7	S E G 8	S E G 9	S E G 10	S E G 11	S E G 12	S E G 13	S E G 14	S E G 15	S E G 16	S E G 17	S E G 18	S E G 19
COM0	D0	0	1	1	0	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
COM1	D1	0	0	1	1	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0
COM2	D2	0	0	0	1	0	1	0	0	1	1	1	0	0	0	0	0	0	0	0	0
COM3	D3	0	0	1	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0
Address		00h	01h	02h	03h	04h	05h	06h	07h	08h	09h	0Ah	0Bh	0Ch	0Dh	0Eh	0Fh	10h	11h	12h	13h

Initialize Sequence

Follow the Power-on sequence below to initialize condition.

Power on \downarrow STOP condition \downarrow START condition \downarrow Issue Slave Address \downarrow Execute Software Reset by sending ICSET command.

After Power-on and before sending initialize sequence, each register value, DDRAM address and DDRAM Data are random.

Start Sequence

Start Sequence Example1

No.	Input	D7	D6	D5	D4	D3	D2	D1	D0	Descriptions
1	Power on									VDD=0V→5V (Tr: Min 1ms to Max 500ms)
	→									
2	Wait min100µs									Initialize
	→									
3	STOP									STOP condition
	\rightarrow									
4	START									START condition
	→									
5	Slave Address	0	1	1	1	1	1	0	0	Issue Slave Address
	\rightarrow									
6	ICSET	1	1	1	0	1	0	1	0	Software Reset
	↓									
7	BLKCTL	1	1	1	1	0	*	0	0	Blink off
	→									
8	DISCTL	1	0	1	0	0	1	0	0	80Hz, Frame inv., Power save mode1
	\rightarrow									
9	ICSET	1	1	1	0	1	*	0	1	External clock input
	\rightarrow									
10	ADSET	0	0	0	0	0	0	0	0	RAM address set
	→									
11	Display Data	*	*	*	*	*	*	*	*	address 00h to 01h
	Display Data	*	*	*	*	*	*	*	*	address 02h to 03h
	Display Data	*	*	*	*	*	*	*	*	address 12h to 13h
	\rightarrow									
12	STOP									STOP condition
	\rightarrow									
13	START									START condition
	↓									
14	Slave Address	0	1	1	1	1	1	0	0	Issue Slave Address
	\downarrow									
15	MODESET	1	1	0	*	1	0	*	*	Display on
	↓									
16	STOP									STOP condition

(*: Don't care)

Start Sequence Example2

BU91796FS-M is initialized with Start Sequence, starts to display with "DISPON Sequence", updates Display Data with "RAM Write Sequence" and stops the display with "DISPOFF Sequence". Execute "DISPON Sequence" in order to restart display.

Initialize Sequence

loout				DA	TΑ				Description
input	D7	D6	D5	D4	D3	D2	D1	D0	Description
Power on									
Wait 100µs									
STOP									
START									
Slave Address	0	1	1	1	1	1	0	0	
ICSET	1	1	1	0	1	0	1	0	Execute Software Reset
MODESET	1	1	0	0	0	0	0	0	Display Off
ADSET	0	0	0	0	0	0	0	0	RAM address set
Display Data	*	*	*	*	*	*	*	*	Display Data
STOP									

DISPON Sequence

Input				DA	TΑ				Description		
input	D7	D6	D5	D4	D3	D2	D1	D0	Description		
START											
Slave Address	0	1	1	1	1	1	0	0			
ICSET	1	1	1	0	1	0	0	0	Execute internal OSC mode		
DISCTL	1	0	1	1	1	1	1	1	Set Display Control		
BLKCTL	1	1	1	1	0	0	0	0	Set BLKCTL		
APCTL	1	1	1	1	1	1	0	0	Set APCTL		
MODESET	1	1	0	0	1	0	0	0	Display on		
STOP											

RAM Write Sequence

Input				DA	TA				Description		
mput	D7	D6	D5	D4	D3	D2	D1	D0	Description		
START											
Slave Address	0	1	1	1	1	1	0	0			
ICSET	1	1	1	0	1	0	0	0	Execute internal OSC mode		
DISCTL	1	0	1	1	1	1	1	1	Set Display Control		
BLKCTL	1	1	1	1	0	0	0	0	Set BLKCTL		
APCTL	1	1	1	1	1	1	0	0	Set APCTL		
MODESET	1	1	0	0	1	0	0	0	Display on		
ADSET	0	0	0	0	0	0	0	0	RAM address set		
Display Data	*	*	*	*	*	*	*	*	Display Data		
STOP											

DISPOFF Sequence

Eler err obga	••••	••									
Input				DA	ΤA				Description		
input	D7	D6	D5	D4	D3	D2	D1	D0	Description		
START											
Slave Address	0	1	1	1	1	1	0	0			
ICSET	1	1	1	0	1	0	0	0	Execute internal OSC mode		
MODESET	1	1	0	0	0	0	0	0	Display off		
STOP											

Abnormal operation may occur in BU91796FS-M due to the effect of noise or other external factor.

To avoid this phenomenon, it is highly recommended to input command according to sequence described above during initialization, display on/off and refresh of RAM data.

Cautions in Power ON/OFF

To prevent incorrect display, malfunction and abnormal current, follow Power On/Off sequence shown in waveform below. VDD must be turned on before VLCD during power up sequence.

VDD must be turned off after VLCD during power down sequence.

Set VDD-2.4≥ VLCD, t1>0ns and t2>0ns.

To refrain from data transmission is strongly recommended while power supply is rising up or falling down to prevent from the occurrence of disturbances on transmission and reception.

Figure 19. Power ON/OFF Waveform

Caution in P.O.R Circuit Use

BU91796FS-M has "P.O.R" (Power-On Reset) circuit and Software Reset function. Keep the following recommended Power-On conditions in order to power up properly.

Set power up conditions to meet the recommended t_R, t_F, t_{OFF}, and V_{BOT} specification below in order to ensure P.O.R operation.

Set pin TEST2="L" to enable POR circuit.

Recommended condition of t_R, t_F, t_{OFF}, V_{BOT} (Ta=+25°C)

t _R ^(Note)	tr ^(Note)	toff ^(Note)	VBOT ^(Note)
1ms	1ms	Min 20ms	Less than
to 500ms	to 500ms		0.1V

(Note) This function is guaranteed by design, not tested in production process.

Figure 20. Power ON/OFF Waveform

When it is difficult to keep above conditions, it is possibility to cause meaningless display due to no IC initialization. Please execute the IC initialization as quickly as possible after Power-On to reduce such an affect. See the IC initialization flow as below.

Setting TEST2="H" disables the POR circuit, in such case, execute the following sequence.

Note however that it cannot accept command while supply is unstable or below the minimum supply range. Note also that software reset is not a complete alternative to POR function.

1. Generate STOP Condition

2. Generate START Condition.

Figure 22. START Condition

3. Issue Slave Address

4. Execute Software Reset (ICSET) Command

Display off Operation in External Clock Mode

After receiving MODESET(Display off), BU91796FS-M enters to DISPOFF sequence synchronized with frame then Segment and Common ports output VSS level after 1 frame of OFF data write.

Therefore, in external clock mode, it is necessary to input the external clock based on each frame frequency setting after sending MODESET(Display off).

For the required number of clock, refer to Power save mode FR of DISCTL.

Please input the external clock as below.

DISCTL 80HZ setting(Frame frequency [Hz] = external clock [Hz] / 512), it needs over 1024clk DISCTL 71HZ setting(Frame frequency [Hz] = external clock [Hz] / 576), it needs over 1152clk DISCTL 64HZ setting(Frame frequency [Hz] = external clock [Hz] / 648), it needs over 1296clk DISCTL 53HZ setting(Frame frequency [Hz] = external clock [Hz] / 768), it needs over 1536clk

Please refer to the timing chart below.

Figure 23. External Clock Stop Timing

Note on the Multiple Devices be Connected to 2 Wire Interface

Do not access the other device without power supply (VDD) to BU91796FS-M.

Figure 24. Example of BUS connection

To control the slope of the falling edge, a capacitor is connected between gate and drain of a NMOS transistor (Refer to Figure 25).

The gate is in a high-impedance state when the power supply (VDD) is not supplied.

In this condition, the gate voltage is pulled up by the current flow through the capacitance as a result of the SDA signal's transition from LOW to HIGH.

The NMOS transistor turns on and draws some current (Ids) from the SDA port if the gate voltage (Vg) is higher than the threshold voltage (Vth).

An external resistor (R) is connected between the power line and SDA line to keep the SDA line as logic HIGH. But the line cannot be kept as logic HGH if the voltage drop (R*Ids) is large.

Apply power supply(VDD) to BU91796FS-M when the multiple devices are on the same bus.

Figure 25. SDA output cell structure

Operational Notes

1. Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply pins.

2. Power Supply Lines

Design the PCB layout pattern to provide low impedance supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.

3. Ground Voltage

Ensure that no pins are at a voltage below that of the ground pin at any time, even during transient condition.

4. Ground Wiring Pattern

When using both small-signal and large-current ground traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the ground traces of external components do not cause variations on the ground voltage. The ground lines must be as short and thick as possible to reduce line impedance.

5. Thermal Consideration

Should by any chance the power dissipation rating be exceeded the rise in temperature of the chip may result in deterioration of the properties of the chip. The absolute maximum rating of the Pd stated in this specification is when the IC is mounted on a 70mm x 1.6mm glass epoxy board. In case of exceeding this absolute maximum rating, increase the board size and copper area to prevent exceeding the Pd rating.

6. Recommended Operating Conditions

These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.

7. Inrush Current

When power is first supplied to the IC, it is possible that the internal logic may be unstable and inrush current may flow instantaneously due to the internal powering sequence and delays, especially if the IC has more than one power supply. Therefore, give special consideration to power coupling capacitance, power wiring, width of ground wiring, and routing of connections.

8. Operation Under Strong Electromagnetic Field

Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.

9. Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.

10. Inter-pin Short and Mounting Errors

Ensure that the direction and position are correct when mounting the IC on the PCB. Incorrect mounting may result in damaging the IC. Avoid nearby pins being shorted to each other especially to ground, power supply and output pin. Inter-pin shorts could be due to many reasons such as metal particles, water droplets (in very humid environment) and unintentional solder bridge deposited in between pins during assembly to name a few.

Operational Notes – continued

11. Unused Input Pins

Input pins of an IC are often connected to the gate of a MOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of the IC. So unless otherwise specified, unused input pins should be connected to the power supply or ground line.

12. Regarding the Input Pin of the IC

In the construction of this IC, P-N junctions are inevitably formed creating parasitic diodes or transistors. The operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower than the ground voltage should be avoided. Furthermore, do not apply a voltage to the input pins when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input pins have voltages within the values specified in the electrical characteristics of this IC.

Ordering Information

Μ	E 2	

Product Rank M: for Automotive Packaging and forming specification E2: Embossed tape and reel

Lineup

Package		Orderable Part Number
SSOP-A32	Reel of 2000	BU91796FS-ME2

Marking Diagram

Physical Dimension, Tape and Reel Information

Revision History

Date	Revision	Changes	
08. Feb. 2016	001	New Release	
06. Feb. 2017	002	Add BU91796FS-M(SSOP-A32) Prohibit 1/2 bias setting P.8 Modify Figure 11,Interface Protocol P.10 Modify BLKCTL of Description List of Command / Function P.12 Modify BLKCTL of Description List of Command / Function P.12 Modify Set Power save mode FR table.(50Hz -> 53Hz) P.18 Add Power Supply Sequence P.19 Modify the comment in Caution in P.O.R Circuit Use P.20 Add Display off operation in external clock mode P.21 Add Note on the multiple devices be connected to 2 wire interface P.22 Modify Operational Notes 5. Thermal Consideration P.23 Delete Operational Notes 13. Data transmission P.24 Add SSOP-A32 to Ordering Information, Lineup and Marking Diagram P.26 Add SSOP-A32 Physical Dimension, Tape and Reel Information	
24. Jan. 2018	003	Remove BU91796MUF-M (VQFN32FV5050)	