

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

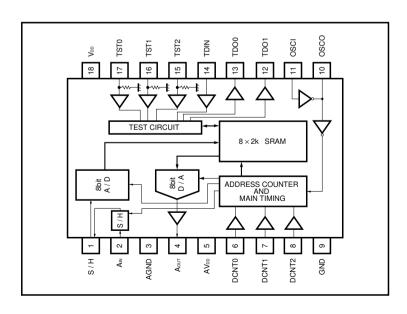
Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Audio digital delay (KARAOKE echo) BU9252S / BU9252F

The BU9252S and BU9252F are digital delays specifically for Karaoke systems. Each has an internal sample hold circuit, an 8-bit A / D and D / A converter and 2kB SRAM, and allows for the selection of one of eight delay times just by attaching an inexpensive ceramic resonator.

A digital echo system can be formed by using either of these ICs together with the BA7725S or BA7725FS.

Applications


Karaoke echo system
Electronic circuits that require signal delays

Features

- 1) Internal digital delay circuit.
- 2) Internal 8-bit A / D converter. Sample rate. (14.22kHz when fosc = 455kHz).
- 3) Internal 2k bytes data SRAM.

- 4) Internal 8-bit D / A converter.
- 5) CMOS design for low power consumption.
- 6) Internal sample hold circuit.
- Internal feedback resistors and capacitors for oscillator circuits.

Block diagram

Pin descriptions

Pin No.	Pin name	Function	Pin No.	Pin name	Function
1	S/H	For attaching sample-and-hold capacitor	10	osco	Oscillator pin 2
2	Aın	Analog input	11	OSCI	Oscillator pin 1
3	AGND	Analog circuit ground	12	TDO1	Test pin (output)
4	Аоит	Analog output	13	TDO0	Test pin (output)
5	AV _{DD}	Analog circuit power supply	14	TDIN	Test pin (input)
6	DCNT0	Delay setting input	15	TST2	Test mode setting
7	DCNT1	Delay setting input	16	TST1	Test mode setting
8	DCNT2	Delay setting input	17	TST0	Test mode setting
9	GND	Digital circuit ground	18	V _{DD}	Digital circuit power supply

•Input / output circuits

Pin name	Pin No.	Internal equivalent circuit	Pin name	Pin No.	Internal equivalent circuit	
S/H	1				Т	
Ain	2		OSCI OSCO	11 10		
TDIN DCNT0 DCNT1 DCNT2	14 6 7 8					
TDO0 TDO1	13 12		Аоит	4	D/A	
TST0 TST1 TST2	17 16 15				Built-in 0.875x amplifier as output buffer.	

• Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit
Power supply voltage		V _{DD}	− 0.3 ~ + 7.0	V
Power dissipation	BU9252S	Dd	600*1	\/
	BU9252F	Pd	450*²	mW
Storage temperature		Tstg	− 55 ~ + 125	°C
Input voltage		Vin	- 0.3 ~ V _{DD} + 0.3	V
Output voltage		Vоит	- 0.3 ~ V _{DD} + 0.3	V

^{*1} IC only. Reduce by – 6mW / °C for each in Ta of 1°C over 25°C.

Recommended operating conditions

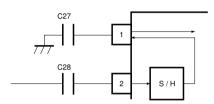
Parameter	Symbol	Limits	Unit
Power supply voltage	V _{DD}	4.5 ~ 5.5	V
Analog power supply voltage	AVDD	V _{DD}	V
Input "L" voltage	VIL	0.0 ~ 0.2V _{DD}	V
Input "H" voltage	ViH	0.8V _{DD} ~ V _{DD}	V
Analog input voltage	Vain	0 ~ AVDD	V
Clock frequency	fosc	200 ~ 1000	kHz
Operating temperature	Topr	− 10 ~ + 70	°C

● Electrical characteristics (unless otherwise noted, Ta = 25°C, VDD = AVDD = 5V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply current	ldd	_	3.5	12	mA	Vain = AVDD, fosc = 455kHz
Analog output current	Іаоит	1	4	_	mA	VAOUT = 1V, VAIN = 0V
Analog output current		0.3	0.8	_	mA	VAOUT = 0.5VDD, VAIN = VDD
Analog input impedance	Rain	12	25	60	kΩ	*
A / D to D / A precision	RES	_	2	_	LSB	
OSCO output "L" voltage	VLOSC	_	0.6	1.2	V	IoL = 100μA
OSCO output "H" voltage	VHOSC	3.8	4.4	_	V	Ioн = - 100μA
OSCI feedback loop current	losci	1	6	20	μΑ	Vosci = VDD
Oscillation capacity	_	_	150	_	pF	

st The bias circuit is impedance.

^{*2} IC only. Reduce by -4.5mW / °C for each in Ta of 1°C over 25°C.


Circuit operation

(1) External capacitor for signal input pin

Audio signals compressed by the BA7725S or BA7725FS have their DC component removed by an AC coupling capacitor and are then input to pin 2 of BU9252S or BU9252F. At this stage, level deviations occur because the input signal is capacitor-divided by this AC coupling capacitor C28 and by sampling hold capacitor C27 connected to pin 1.

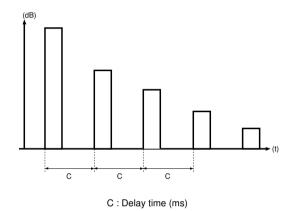
To prevent this, make sure that C27 is much lower than C28.

(Note: The numbers of external components are the numbers used in the system application example.)

The sample-held analog signal is converted to digital by the serial 8-bit A / D converter and then temporarily stored in the internal SRAM (2k bytes).

(2) Relationship between oscillation frequency (CLK) and delay time

Sample rate F = fosc / 32 (fosc: oscillation frequency)

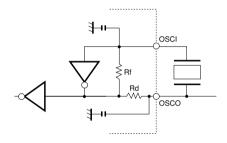

F = 14.22kHz at fosc = 455kHz

Sample period T = 1 / F

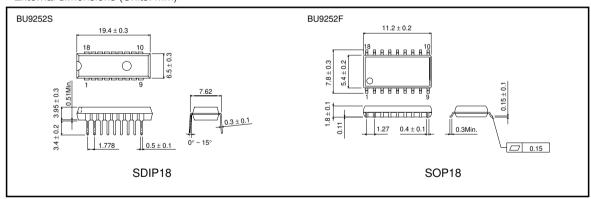
Delay time Dtime = $T \times$ number of counts

(3) Delay timer settings

The delay time (i.e., the length of time the signal is stored in the SRAM) can be set to any of eight settings between the maximum and minimum delay times by setting pins 6, 7 and 8 to the combination of logic signal inputs that results in the corresponding number of counts. The maximum and minimum delay times are determined by the oscillation frequency of the attached ceramic resonator.


The delay time can be set to any of the eight settings shown below by setting the logic inputs of terminals DCNT0 through DCNT2.

	Logic input		Count	Delay time (ms) (when fosc = 455kHz)
DCNT1	DCNT2	DCNT0	BU9252S / F	BU9252S / F
0	0	0	256	18.00
0	0	1	512	36.01
0	1	0	768	54.01
0	1	1	1024	72.02
1	0	0	1280	90.02
1	0	1	1536	108.03
1	1	0	1792	126.03
1	1	1	2048	144.04


Maximum and minimum delay times when using 300kHz, 375kHz and 455kHz ceramic oscillators

Delay time (ms)								
300	kHz	375	kHz	455kHz				
Max.	Max. Min.		Min.	Max.	Min.			
218.45	27.30	174.76	21.85	144.04	18.00			

(4) Peripheral components of the ceramic oscillator An oscillator circuit can be configured simply by attaching a 455kHz ceramic resonator.

External dimensions (Units: mm)

