: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

LCD Segment Drivers

Multi-function LCD Segment Drivers

BU97550KV-M

MAX 528 Segment(66SEG x 8COM)

General Description

The BU97550KV-M is $1 / 8,1 / 7,1 / 5,1 / 4,1 / 3$, or Static general-purpose LCD driver.
The BU97550KV-M can drive up to 528 LCD Segments directly. The BU97550KV-M can also control up to 9 General-Purpose/PWM output ports.
These products also incorporate a key scan circuit that accepts input from up to 30 keys to reduce printed circuit board wiring

Features

- AEC-Q100 Qualified (Note)
- Key Input Function for Up to 30 Keys (A key scan is performed only when a key is pressed.)
- Either $1 / 8,1 / 7,1 / 5,1 / 4,1 / 3$ or Static Can be Selected with The Serial Control Data. 1/8 duty drive: Up to 528 Segments can be driven 1/7 duty drive: Up to 469 Segments can be driven 1/5 duty drive: Up to 345 Segments can be driven $1 / 4$ duty drive: Up to 280 Segments can be driven $1 / 3$ duty drive: Up to 210 Segments can be driven Static drive: Up to 70 Segments can be driven
- Serial Data Control of Frame Frequency for Common and Segment output Waveforms.
- Serial Data Control of Switching Between The Segment output Port, PWM output Port and General-Purpose output Port Functions.(Max 9 ports)
- Built-in Oscillation circuit
- Integrated Voltage Detected Type Power on Reset(VDET) circuit
- No External Component
- Low Power Consumption Design
- Supports Line and Frame Inversion

Key Specifications

- Supply Voltage Range: +2.7 V to +6.0 V
- Operating Temperature Range: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Max Segments: 528 Segments
- Display Duty
- Bias:
- Interface: Static, $1 / 3,1 / 4,1 / 5,1 / 7,1 / 8$

Selectable
1/2, 1/3, 1/4 Selectable 3wire Serial Interface

Applications

■ Car Audio, Home Electrical Appliance, Meter Equipment etc.

Package
W (Typ) $\times \mathrm{D}$ (Typ) $\times \mathrm{H}$ (Max)

VQFP80
$14.00 \mathrm{~mm} \times 14.00 \mathrm{~mm} \times 1.60 \mathrm{~mm}$

Typical Application Circuit

Figure 1. Typical Application Circuit

Block Diagram

Figure 2. Block Diagram
Pin Arrangement

Figure 3. Pin Configuration (TOP VIEW)

Absolute Maximum Ratings (VSS = OV)

Parameter	Symbol	Pin	Rating	Unit
Maximum Supply Voltage	VDD	VDD	-0.3 to +7.0	V
Input Voltage	VIN1	SCE, SCL, SDI	-0.3 to +7.0	V
	VIN2	KI 1 to KI5	-0.3 to +7.0	V
Allowable Loss	Pd		$1.2{ }^{\text {(Note3) }}$	W
Operating Temperature	Topr		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	Tstg		-55 to +125	${ }^{\circ} \mathrm{C}$

(Note3) When use more than $\mathrm{Ta}=25^{\circ} \mathrm{C}$, subtract 12 mW per degree. (Using ROHM standard board)
(Board size: $70 \mathrm{~mm} \times 70 \mathrm{~mm} \times 1.6 \mathrm{~mm}$ material: FR4 board copper foil: land pattern only)
Caution: Operating the IC over the absolute maximum ratings may damage the IC. The damage can either be a short circuit between pins or an open circuit between pins and the internal circuitry. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.

Recommend Operating Conditions ($\mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, VSS $=0 \mathrm{~V}$)

| Parameter | Symbol | Conditions | Rating | | | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Min | Typ | Max | V |
| Supply Voltage | VDD | | 2.7 | 5.0 | 6.0 | V |

Electrical Characteristics ($\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \mathrm{~V}$ to 6.0 V , $\mathrm{VSS}=0 \mathrm{~V}$)

Parameter	Symbol	Pin	Conditions	Limit			Unit
				Min	Typ	Max	
Hysteresis	$\mathrm{V}_{\mathrm{H} 1}$	SCE, SCL, SDI		-	0.03 VDD	-	V
	$\mathrm{V}_{\mathrm{H} 2}$	KI1 to KI5		-	0.1 VDD	-	
Power-on Detection Voltage	V ${ }_{\text {det }}$	VDD		1.3	1.8	2.2	V
"H" Level Input Voltage	$\mathrm{V}_{\mathrm{HH} 1}$	SCE, SCL, SDI	$4.5 \mathrm{~V} \leq \mathrm{VDD} \leq 6.0 \mathrm{~V}$	0.4VDD	-	VDD	V
	$\mathrm{V}_{\mathbf{1}+2}$	SCE, SCL, SDI	$2.7 \mathrm{~V} \leq \mathrm{VDD}<4.5 \mathrm{~V}$	0.8 VDD	-	VDD	
	VIH3	KI1 to KI5		0.7VDD	-	VDD	
"L" Level Input Voltage	VIL1	$\begin{aligned} & \text { SCE, SCL, SDI } \\ & \text { KI1 to KI5 } \end{aligned}$		0	-	0.2VDD	V
Input Floating Voltage	$V_{\text {IF }}$	KI1 to KI5		-	-	0.05VDD	V
Pull-down Resistance	RPD	KI1 to KI5	VDD $=5.0 \mathrm{~V}$	50	100	250	k Ω
Output Off Leakage Current	loffy	SDO	$\mathrm{V}_{\mathrm{o}}=6.0 \mathrm{~V}$	-	-	6.0	$\mu \mathrm{A}$
" H " Level Input Current	$\mathrm{I}_{\mathbf{H} 1}$	SCE, SCL, SDI	$\mathrm{V}_{1}=5.5 \mathrm{~V}$	-	-	5.0	$\mu \mathrm{A}$
"L" Level Input Current	l/L1	SCE, SCL, SDI	V I $=0 \mathrm{~V}$	-5.0	-	-	$\mu \mathrm{A}$
" H " Level Output Voltage	Voh1	S1 to S70	$\begin{aligned} & \mathrm{lo}=-20 \mu \mathrm{~A}, \\ & \mathrm{VLCD}=1.00^{*} \mathrm{VDD} \end{aligned}$	VDD-0.9	-	-	V
	Vон2	COM1 to COM8	$\begin{aligned} & \mathrm{Io}=-100 \mu \mathrm{~A}, \\ & \mathrm{VDD}=1.00^{*} \mathrm{VDD} \end{aligned}$	VDD-0.9	-	-	
	Vонз	P1/G1 to P9/G9	$\mathrm{lo}=-1 \mathrm{~mA}$	VDD-0.9	-	-	
	VOH4	KS1 to KS6	$\mathrm{l}=-500 \mu \mathrm{~A}$	VDD-1.0	VDD-0.5	VDD-0.2	
"L" Level Output Voltage	VoL1	S1 to S70	$\mathrm{lo}=20 \mu \mathrm{~A}$	-	-	0.9	V
	Vol2	COM1 to COM8	$l o=100 \mu \mathrm{~A}$	-	-	0.9	
	Vol3	P1/G1 to P9/G9	$\mathrm{lo}=1 \mathrm{~mA}$	-	-	0.9	
	VoL4	KS1 to KS6	$\mathrm{lo}=25 \mu \mathrm{~A}$	0.2	0.5	1.5	
	Vol5	SDO	$\mathrm{lo}=1 \mathrm{~mA}$	-	0.1	0.5	
Middle Level Output Voltage	$\mathrm{V}_{\text {MID1 }}$	S1 to S70	$\begin{aligned} & 1 / 2 \text { bias } \mathrm{lo}= \pm 20 \mu \mathrm{~A} \\ & \text { VLCD }=1.00 * \text { VDD } \end{aligned}$	$\begin{gathered} \hline 1 / 2 \text { VDD } \\ -0.9 \\ \hline \end{gathered}$	-	$\begin{gathered} 1 / 2 \text { VDD } \\ +0.9 \\ \hline \end{gathered}$	V
	$\mathrm{V}_{\text {MID2 }}$	COM1 to COM8	$\begin{aligned} & 1 / 2 \text { bias } \mathrm{lo}= \pm 100 \mu \mathrm{~A} \\ & \text { VLCD }=1.00^{*} \text { VDD } \end{aligned}$	$\begin{gathered} 1 / 2 \text { VDD } \\ -0.9 \end{gathered}$	-	$\begin{gathered} 1 / 2 \mathrm{VDD} \\ +0.9 \end{gathered}$	
	Vmid3	S1 to S70	$\begin{aligned} & 1 / 3 \text { bias lo }= \pm 20 \mu \mathrm{~A} \\ & \text { VLCD }=1.00^{*} \mathrm{VDD} \end{aligned}$	$\begin{gathered} \text { 2/3 VDD } \\ -0.9 \end{gathered}$	-	$\begin{gathered} \text { 2/3 VDD } \\ +0.9 \end{gathered}$	
	$\mathrm{V}_{\text {MID4 }}$	S1 to S70	$\begin{aligned} & 1 / 3 \text { bias } \mathrm{lo}= \pm 20 \mu \mathrm{~A} \\ & \text { VLCD }=1.00^{*} \mathrm{VDD} \end{aligned}$	$\begin{gathered} 1 / 3 \text { VDD } \\ -0.9 \end{gathered}$	-	$\begin{gathered} 1 / 3 \text { VDD } \\ +0.9 \\ \hline \end{gathered}$	
	$\mathrm{V}_{\text {MID5 }}$	COM1 to COM8	$\begin{aligned} & 1 / 3 \text { bias lo }= \pm 100 \mu \mathrm{~A} \\ & \text { VLCD }=1.00 * \text { VDD } \end{aligned}$	$\begin{gathered} \text { 2/3 VDD } \\ -0.9 \end{gathered}$	-	$\begin{gathered} \text { 2/3 VDD } \\ +0.9 \end{gathered}$	
	$\mathrm{V}_{\text {MID6 }}$	COM1 to COM8	$\begin{aligned} & 1 / 3 \text { bias lo }= \pm 100 \mu \mathrm{~A} \\ & \text { VLCD }=1.00^{*} \text { VDD } \end{aligned}$	$\begin{gathered} 1 / 3 \text { VDD } \\ -0.9 \end{gathered}$	-	$\begin{gathered} 1 / 3 \mathrm{VDD} \\ +0.9 \\ \hline \end{gathered}$	
	$\mathrm{V}_{\text {MID7 }}$	S1 to S70	$\begin{aligned} & 1 / 4 \text { bias } \mathrm{lo}= \pm 20 \mu \mathrm{~A} \\ & \text { VLCD }=1.00^{*} \mathrm{VDD} \end{aligned}$	$\begin{gathered} 1 / 2 \text { VDD } \\ -0.9 \end{gathered}$	-	$\begin{gathered} 1 / 2 \mathrm{VDD} \\ +0.9 \\ \hline \end{gathered}$	
	$\mathrm{V}_{\text {MID8 }}$	COM1 to COM8	$\begin{aligned} & 1 / 4 \text { bias } \mathrm{lo}= \pm 100 \mu \mathrm{~A} \\ & \text { VLCD }=1.00^{*} \text { VDD } \end{aligned}$	$\begin{gathered} \text { 3/4 VDD } \\ -0.9 \end{gathered}$	-	$\begin{gathered} \text { 3/4 VDD } \\ +0.9 \end{gathered}$	
	$\mathrm{V}_{\text {MID9 }}$	COM1 to COM8	$\begin{aligned} & 1 / 4 \text { bias } \mathrm{lo}= \pm 100 \mu \mathrm{~A} \\ & \text { VLCD }=1.00^{*} \text { VDD } \end{aligned}$	$\begin{gathered} 1 / 4 \mathrm{VDD} \\ -0.9 \\ \hline \end{gathered}$	-	$\begin{gathered} 1 / 4 \mathrm{VDD} \\ +0.9 \\ \hline \end{gathered}$	

Electrical Characteristics - continued

Parameter	Symbol	Pin	Conditions	Limit			Unit
				Min	Typ	Max	
Current Consumption	IDD1	VDD	Power-saving mode	-	-	15	$\mu \mathrm{A}$
	IDD2	VDD	$\mathrm{VDD}=5.0 \mathrm{~V}$ Output open, $1 / 2$ bias Frame frequency $=80 \mathrm{~Hz}$ $\mathrm{VLCD}=1.00^{*} \mathrm{VDD}$	-	105	220	
	IdD3	VDD	$\mathrm{VDD}=5.0 \mathrm{~V}$ Output open, $1 / 3$ bias Frame frequency $=80 \mathrm{~Hz}$ $\mathrm{VLCD}=1.00 * \mathrm{VDD}$	-	130	270	
	IDD4	VDD	$\mathrm{VDD}=5.0 \mathrm{~V}$ Output open, $1 / 4$ bias Frame frequency $=80 \mathrm{~Hz}$ VLCD=1.00*VDD	-	160	330	

Oscillation Characteristics ($\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{VDD}=2.7 \mathrm{~V}$ to 6.0 V , $\mathrm{VSS}=0.0 \mathrm{~V}$)

Parameter	Symbol	Pin	Conditions	Limit			Unit
				Min	Typ	Max	
scillator Frequency 1	fosc1	-	$\mathrm{VDD}=2.7 \mathrm{~V}$ to 6.0 V	300	-	720	kHz
Oscillator Frequency 2	fosc2	-	$\mathrm{VDD}=5.0 \mathrm{~V}$	540	600	660	kHz
Oscillator Frequency 3	fosc3	-	$\mathrm{VDD}=6.0 \mathrm{~V}$	562	625	688	kHz
External Clock Frequency(Note4)	fosc4	OSC_IN/S70	External clock mode$(O C=1)$	30	-	1000	kHz
External Clock Rise Time	tr			-	160	-	ns
External Clock Fall Time	tf			-	160	-	ns
External Clock Duty	tDTY			30	50	70	\%

(Note4) Frame frequency is decided external frequency and dividing ratio of FC0 to FC3 setting.
[Reference Data]

Figure 4. Frame Frequency Typical Temperature Characteristics

MPU Interface Characteristics ($\mathrm{Ta}=-40$ to $+85^{\circ} \mathrm{C}$, VDD $=2.7 \mathrm{~V}$ to 6.0 V , VSS $=0 \mathrm{~V}$)

Parameter	Symbol	Pin	Conditions	Limit			Unit
				Min	Typ	Max	
Data Setup Time	tos	SCL, SDI		120	-	-	ns
Data Hold Time	toh	SCL, SDI		120	-	-	ns
SCE Wait Time	tcp	SCE, SCL		120	-	-	ns
SCE Setup Time	tcs	SCE, SCL		120	-	-	ns
SCE Hold Time	tch	SCE, SCL		120	-	-	ns
Clock Cycle Time	tccyc	SCL		320	-	-	ns
High-level Clock Pulse Width	tchw	SCL		120	-	-	ns
Low-level Clock Pulse Width (Write)	tclww	SCL		120	-	-	ns
Low-level Clock Pulse Width (Read)	tclwr	SCL	$\begin{aligned} & \mathrm{R}_{\mathrm{Pu}}=4.7 \mathrm{k} \Omega \\ & \mathrm{CL}_{\mathrm{L}}=10 \mathrm{pF} \mathrm{~F}^{(\text {Note5 })} \end{aligned}$	1.6	-	-	$\mu \mathrm{s}$
Rise Time	tr	SCE, SCL, SDI		-	160	-	ns
Fall Time	tf	SCE, SCL, SDI		-	160	-	ns
SDO Output Delay Time	toc	SDO	$\begin{aligned} & \mathrm{RPU}=4.7 \mathrm{k} \Omega \\ & \mathrm{CL}=10 \mathrm{pF} \mathrm{~F}^{(\text {Note5 })} \end{aligned}$	-	-	1.5	$\mu \mathrm{s}$
SDO Rise Time	tDR	SDO	$\begin{aligned} & \mathrm{RP}_{\mathrm{P} u}=4.7 \mathrm{k} \Omega \\ & \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF} \mathrm{~F}^{\text {(Note5) }} \end{aligned}$	-	-	1.5	$\mu \mathrm{s}$

(Note5) Since SDO is an open-drain output, "tDC" and "tDR" depend on the resistance of the pull-up resistor RPu and the load capacitance CL.
RPu: $1 \mathrm{k} \Omega \leq R P U \leq 10 \mathrm{k} \Omega$ is recommended
C_{L} : A parasitic capacitance in an application circuit. Any component is not necessary to be attached.

1. When SCL is stopped at the low level

2. When SCL is stopped at the high level

Figure 5. Serial Interface Timing

Pin Description

Symbol	Pin No.	Function	Active	I/O	Handling when unused
$\begin{gathered} \text { S1/P1/G1 to } \\ \text { S9/P9/G9 } \end{gathered}$	$\begin{aligned} & 79,80, \\ & 1 \text { to } 7 \end{aligned}$	Segment output for displaying the display data transferred by serial data input. The S1/P1/G1 to S9/P9/G9 pins can also be used as General-Purpose or PWM output when so set up by the control data.	-	0	OPEN
$\begin{gathered} \text { S10 to S52 } \\ \text { S68, S69 } \end{gathered}$	$\begin{aligned} & 8 \text { to } 50 \\ & 72,74 \\ & \hline \end{aligned}$	Segment output for displaying the display data transferred by serial data input.	-	0	OPEN
$\begin{aligned} & \text { KS1/S53 to } \\ & \text { KS6/S58 } \end{aligned}$	51 to 56	Key scan outputs Although normal key scan timing lines require diodes to be inserted in the timing lines to prevent shorts, since these outputs are unbalanced CMOS transistor outputs, these outputs will not be damaged by shorting when these outputs are used to form a key matrix. The KS1/S53 to KS6/S58 pins can be used as Segment outputs when so specified by the control data.	-	0	OPEN
$\begin{aligned} & \hline \text { KI1/S59 to } \\ & \text { KI5/S63 } \end{aligned}$	57 to 61	Key scan inputs These pins have built-in pull-down resistors. The KI1/S59 to KI5/S63 pins can be used as Segment outputs when so specified by the control data.	-	I/O	OPEN
COM1 to COM4	66 to 69	Common driver output pins. The frame frequency is fo[Hz].	-	0	OPEN
$\begin{aligned} & \text { COM5/S67 } \\ & \text { COM6/S66 } \\ & \text { COM7/S65 } \\ & \text { COM8/S64 } \end{aligned}$	$\begin{aligned} & 65 \\ & 64 \\ & 63 \\ & 62 \end{aligned}$	Common / Segment output for LCD driving Assigned as Common output in $1 / 8,1 / 7$ and $1 / 5$ Duty modes and Segment output in Static, $1 / 3$ and $1 / 4$ Duty modes.	-	O	OPEN
OSC_IN/S70	75	Segment output for displaying the display data transferred by serial data input. The OSC_IN/S70 pin can be used as external frequency input pin when set up by the control data.	-	I/O	OPEN
$\begin{aligned} & \text { SCE } \\ & \text { SCL } \\ & \text { SDI } \end{aligned}$	$\begin{aligned} & 76 \\ & 77 \\ & 78 \\ & \hline \end{aligned}$	Serial data transfer inputs. Must be connected to the controller. SCE: Chip enable SCL: Synchronization clock SDI: Transfer data	$\underset{-}{\mathrm{H}}$	$\begin{aligned} & \text { I } \\ & \text { i } \end{aligned}$	
SDO	73	Output data	-	0	OPEN
VDD	70	Power supply pin of the IC A power voltage of 2.7 V to 6.0 V must be applied to this pin.	-	-	-
VSS	71	Power supply pin. Must be connected to ground.	-	-	-

IO Equivalent Circuit

Figure 6. I/O Equivalent Circuit

Serial Data Transfer Formats

1. 1/8 Duty
(1) When SCL is stopped at the low level

1

1
${ }^{\text {SCE }}$ \qquad
 sic
${ }^{\text {SCE }}$

$1 / 20$

Sol
${ }^{\mathrm{SCE}}$
$\square \square \square \square \square \square \square \square$

Figure 7. 3-SPI Data Transfer Format
(Note6) DD is direction data.

Serial Data Transfer Formats - continued

(2) When SCL is stopped at the high level

Figure 8. 3-SPI Data Transfer Format
(Note7) DD is direction data.

Serial Data Transfer Formats - continued

2. 1/7 Duty
(1) When SCL is stopped at the low level

Figure 9. 3-SPI Data Transfer Format

[^0]
Serial Data Transfer Formats - continued

(2) When SCL is stopped at the high level

Figure 10. 3-SPI Data Transfer Format
(Note9) DD is direction data.

Serial Data Transfer Formats - continued

3. $1 / 5$ Duty
(1) When SCL is stopped at the low level

(Note10)
Figure 11. 3-SPI Data Transfer Format

Serial Data Transfer Formats - continued

(2) When SCL is stopped at the high level

Figure 12. 3-SPI Data Transfer Format
(Note11) DD is direction data.

Serial Data Transfer Formats - continued

4. 1/4 Duty
(1) When SCL is stopped at the low level

(Note12)
(Note12) DD is direction data
Figure 13. 3-SPI Data Transfer Format

Serial Data Transfer Formats - continued

(2) When SCL is stopped at the high level

Figure 14. 3-SPI Data Transfer Format
(Note13) DD is direction data.

Serial Data Transfer Formats - continued

5. 1/3 Duty
(1) When SCL is stopped at the low level

[^1]Figure 15. 3-SPI Data Transfer Format

Serial Data Transfer Formats - continued

(2) When SCL is stopped at the high level

Figure 16. 3-SPI Data Transfer Format
(Note15) DD is direction data.

Serial Data Transfer Formats - continued

6. Static
(1) When SCL is stopped at the low level

Figure 17. 3-SPI Data Transfer Format

[^2]
Serial Data Transfer Formats - continued

(2) When SCL is stopped at the high level

(Note17)
Figure 18. 3-SPI Data Transfer Format
(Note17) DD is direction data.

Control Data Functions

1. KM0, KM1 and KM2: Key Scan output port/Segment output port switching control data

These control data bits switch the functions of the KS1/S53 to KS6/S58 output pins between key scan output and Segment output.

KMO	KM1	KM2	Output Pin State						Maximum Number of Input keys	Reset condition
			KS1/S53	KS2/S54	KS3/S55	KS4/S56	KS5/S57	KS6/S58		
0	0	0	KS1	KS2	KS3	KS4	KS5	KS6	30	-
0	0	1	S53	KS2	KS3	KS4	KS5	KS6	25	-
0	1	0	S53	S54	KS3	KS4	KS5	KS6	20	-
0	1	1	S53	S54	S55	KS4	KS5	KS6	15	-
1	0	0	S53	S54	S55	S56	KS5	KS6	10	-
1	0	1	S53	S54	S55	S56	S57	KS6	5	-
1	1	0	S53	S54	S55	S56	S57	S58	0	-
1	1	1	S53	S54	S55	S56	S57	S58	0	\bigcirc

2. P0, P1, P2 and P3: Segment/PWM/General-Purpose output port switching control data

These control bits are used to select the function of the S1/P1/G1 to S9/P9/G9 output Pins (Segment output Pins or PWM output Pins or General-Purpose output Pins).

P0	P1	P2	P3	S1/P1/G1	S2/P2/G2	S3/P3/G3	S4/P4/G4	S5/P5/G5	S6/P6/G6	S7/P7/G7	S8/P8/G8	S9/P9/G9	Reset condition
0	0	0	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	
0	0	0	1	P1/G1	S2	S3	S4	S5	S6	S7	S8	S9	-
0	0	1	0	P1/G1	P2/G2	S3	S4	S5	S6	S7	S8	S9	-
0	0	1	1	P1/G1	P2/G2	P3/G3	S4	S5	S6	S7	S8	S9	-
0	1	0	0	P1/G1	P2/G2	P3/G3	P4/G4	S5	S6	S7	S8	S9	-
0	1	0	1	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	S6	S7	S8	S9	-
0	1	1	0	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	P6/G6	S7	S8	S9	-
0	1	1	1	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	P6/G6	P7/G7	S8	S9	-
1	0	0	0	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	P6/G6	P7/G7	P8/G8	S9	-
1	0	0	1	P1/G1	P2/G2	P3/G3	P4/G4	P5/G5	P6/G6	P7/G7	P8/G8	P9/G9	-
1	0	1	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	0	1	1	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	1	0	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	1	0	1	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	1	1	0	S1	S2	S3	S4	S5	S6	S7	S8	S9	-
1	1	1	1	S1	S2	S3	S4	S5	S6	S7	S8	S9	\bigcirc

PWM output or General-Purpose output is selected by $\operatorname{PGx}(x=1$ to 9$)$ control data bit.
When the General-Purpose output Port Function is selected, the correspondence between the output Pins and the respective display data is given in the table below.

Output Pins	Corresponding Display Data					
	1/8 Duty mode	$1 / 7$ Duty mode	$1 / 5$ Duty mode	$1 / 4$ Duty mode	$1 / 3$ Duty mode	Static
S1/P1/G1	D1	D1	D1	D1	D1	D1
S2/P2/G2	D9	D8	D6	D5	D4	D2
S3/P3/G3	D17	D15	D11	D9	D7	D3
S4/P4/G4	D25	D22	D16	D13	D10	D4
S5/P5/G5	D33	D29	D21	D17	D13	D5
S6/P6/G6	D41	D36	D26	D21	D16	D6
S7/P7/G7	D49	D43	D31	D25	D19	D7
S8/P8/G8	D57	D50	D36	D29	D22	D8
S9/P9/G9	D65	D57	D41	D33	D25	D9

When the General-Purpose output Port Function is selected, the respective output pin outputs a " H " level when its corresponding display data is set to " 1 ". Likewise, it will output a " L " level, if its corresponding display data is set to " 0 ". For example, at $1 / 4$ Duty mode, S4/P4/G4 is used as a General-Purpose output Port, if its corresponding display data D13 is set to " 1 ", then S4/P4/G4 will output "H" level. Likewise, if D13 is set to " 0 ", then S4/P4/G4 will output "L" level.
3. FL: Line Inversion or Frame Inversion switching control data

This control data bit selects either line inversion mode or frame inversion mode.

FL	Inversion mode	Reset condition
0	Line Inversion	O
1	Frame Inversion	-

Control Data Functions - continued

4. DR: $1 / 4$ bias drive, $1 / 3$ bias drive, $1 / 2$ bias drive or $1 / 1$ bias drive switching control data

This control data bit selects either $1 / 4$ bias drive, $1 / 3$ bias drive, $1 / 2$ bias drive or $1 / 1$ bias drive.

DR0	DR1	Bias drive scheme	Reset condition
0	0	$1 / 3$ Bias	O
0	1	$1 / 1$ Bias	-
1	0	$1 / 4$ Bias	-
1	1	$1 / 2$ Bias	-

5. DT: $1 / 8$ duty drive, $1 / 7$ duty drive, $1 / 5$ duty drive, $1 / 4$ duty drive, $1 / 3$ duty drive or Static switching control data These control data bits select either $1 / 8$ duty drive, $1 / 7$ duty drive, $1 / 5$ duty drive, $1 / 4$ duty drive, $1 / 3$ duty drive or Static

DT0	DT1	DT2	Duty drive scheme	Reset condition
0	0	0	Static drive	-
0	0	1	$1 / 3$ duty drive	-
0	1	0	$1 / 4$ duty drive	-
0	1	1	$1 / 5$ duty drive	-
1	0	0	$1 / 7$ duty drive	-
1	0	1	$1 / 8$ duty drive	-
1	1	0	$1 / 4$ duty drive	-
1	1	1	$1 / 4$ duty drive	-

6. FC0, FC1, FC2 and FC3: Common/Segment output waveform frame frequency setting control data

These control data bits set the frame frequency for Common and Segment output waveforms.

FC0	FC1	FC2	FC3	Frame Frequency fo(Hz)	Reset condition
0	0	0	0	fosc $^{(\text {Notete } 8) / 12288}$	-
0	0	0	1	fosc $/ 10752$	-
0	0	1	0	fosc $/ 9216$	-
0	0	1	1	fosc $/ 7680$	-
0	1	0	0	fosc $/ 6144$	-
0	1	0	1	fosc $/ 4608$	-
0	1	1	0	fosc $/ 3840$	-
0	1	1	1	fosc $/ 3072$	-
1	0	0	0	fosc $/ 2880$	-
1	0	0	1	fosc $/ 2688$	-
1	0	1	0	fosc $/ 2496$	-
1	0	1	1	fosc $/ 2304$	-
1	1	0	0	fosc $/ 2112$	-
1	1	0	1	fosc $/ 1920$	-
1	1	1	0	fosc $/ 1728$	-
1	1	1	1	fosc $/ 1536$	-

[^3]
Control Data Functions - continued

7. OC: Internal oscillator operating mode/External clock operating mode switching control data

This control data bit selects oscillation mode.

OC	Operating mode	In/Out pin(OSC/S70) status	Reset condition
0	Internal oscillator	S70 (Segment output)	O
1	External Clock	OSC_IN (clock input)	-

<External Clock input timing function>
Internal oscillation / external clock select signal behavior is below. Input external clock after serial data sending.

Internal oscillation•Extarnal Clock
Select signal(Internal signal) \qquad
Internal oscillation (Internal signal)

Extarnal Clock
(OSC_IN)
8. SC: Segment on/off control data

This control data bit controls the on/off state of the Segments.

SC	Display state	Reset condition
0	ON	-
1	OFF	O

Note that when the Segments are turned off by setting SC to "1", the Segments are turned off by outputting Segment off waveforms from the Segment output pins.

Control Data Functions - continued

9. BU0, BU1 and BU2: Normal mode/Power-saving mode control data

These control data bits select either normal mode or Power-saving mode.

BU0	BU1	BU2	Mode	OSC	Segment outputs	Output Pin States During Key Scan Standby						Reset
					Common outputs	KS1	KS2	KS3	KS4	KS5	KS6	
0	0	0	Normal	Operating	Operating	H	H	H	H	H	H	-
0	0	1	Powersaving	Stopped	Low(VSS)	L	L	L	L	L	H	-
0	1	0				L	L	L	L	H	H	-
0	1	1				L	L	L	H	H	H	-
1	0	0				L	L	H	H	H	H	-
1	0	1				L	H	H	H	H	H	-
1	1	0				H	H	H	H	H	H	-
1	1	1				H	H	H	H	H	H	\bigcirc

Power-saving mode status: S1/P1/G1 to S9/P9/G9 = active only General-Purpose output
S10 to OSC_IN/S70 = low (VSS)
COM1 to COM8 = low (VSS)
Shut off current to the LCD drive bias voltage generation circuit
Stop the Internal oscillation circuit
However, serial data transfer is possible when at Power-saving mode.
10. PG1, PG2, PG3, PG4, PG5, PG6, PG7, PG8 and PG9: PWM/ General-Purpose output port control data

This control data bit select either PWM output or General-Purpose output of $\operatorname{Sx} / \mathrm{Px} / \mathrm{Gx}$ pins. ($\mathrm{x}=1$ to 9)

$\mathrm{PGx}(\mathrm{x}=1$ to 9$)$	Mode	Reset condition
0	PWM output	O
1	General-Purpose output	-

[PWM<->GPO Changing function]
Normal behavior of changing GPO to PWM is below.

- PWM operation is started by command import timing of DD: 001 during GPO \rightarrow PWM change.
- Please take care of reflect timing of new duty setting of DD: 010 and DD: 011 is from the next PWM.

In order to avoid this operation, please input commands in reverse as below.

PWM/GPO output
Start of PWM operation
(PWM waveform on new duty)

Control Data Functions - continued

11. PF0, PF1, PF2, and PF3: PWM output waveform frame frequency setting control data These control data bits set the frame frequency for PWM output waveforms.

PF0	PF1	PF2	PF3	PWM output Frame Frequency fp (Hz)	Reset condition
0	0	0	0	fosc $/ 4096$	-
0	0	0	1	fosc $/ 3840$	-
0	0	1	0	fosc $/ 3584$	-
0	0	1	1	fosc $/ 3328$	-
0	1	0	0	fosc $/ 3072$	-
0	1	0	1	fosc $/ 2816$	-
0	1	1	0	fosc $/ 2560$	-
0	1	1	1	fosc $/ 2304$	-
1	0	0	0	fosc $/ 2048$	-
1	0	0	1	fosc $/ 1792$	-
1	0	1	0	fosc $/ 1536$	-
1	0	1	1	fosc $/ 1280$	-
1	1	0	0	fosc $/ 1024$	-
1	1	0	1	fosc $/ 768$	-
1	1	1	0	fosc $/ 512$	-
1	1	1	1	fosc $/ 256$	-

Control Data Functions - continued

12. CT0, CT1, CT2 and CT3: Display Contrast setting control data

These control data bits set display contrast

CTO	CT1	CT2	CT3	LCD Drive bias voltage for VLCD Level	Reset condition
0	0	0	0	1.000*VDD	\bigcirc
0	0	0	1	0.975*VDD	-
0	0	1	0	0.950*VDD	-
0	0	1	1	0.925*VDD	-
0	1	0	0	0.900*VDD	-
0	1	0	1	0.875*VDD	-
0	1	1	0	0.850*VDD	-
0	1	1	1	0.825*VDD	-
1	0	0	0	0.800*VDD	-
1	0	0	1	0.775*VDD	-
1	0	1	0	0.750*VDD	-
1	0	1	1	0.725*VDD	-
1	1	0	0	0.700*VDD	-
1	1	0	1	0.675*VDD	-
1	1	1	0	0.650*VDD	-
1	1	1	1	0.625*VDD	-

Avoid setting VLCD voltage under 2.5 V .
And ensure "VDD - VLCD $>0.6 \mathrm{~V}$ " condition is satisfied.
Unstable IC output voltage may result if the above conditions are not satisfied.
The relationship of LCD display contrast setting and VLCD voltage

CT Setting	formula	$\mathrm{VDD}=6.000$	$\mathrm{VDD}=5.500$	$\mathrm{VDD}=5.000$	$\mathrm{VDD}=4.500$	$\mathrm{VDD}=4.000$	$\mathrm{VDD}=3.000$	[V]
0	VDD	$\mathrm{VLCD}=6.000$	VLCD $=5.500$	$\mathrm{VLCD}=5.000$	VLCD $=4.500$	VLCD $=4.000$	VLCD $=3.000$	V]
1	0.975*VDD	$\mathrm{VLCD}=5.850$	VLCD $=5.363$	VLCD $=4.875$	VLCD $=4.388$	VLCD $=3.900$	VLCD $=2.925$	[V]
2	0.950*VDD	$\mathrm{VLCD}=5.700$	VLCD $=5.225$	$\mathrm{VLCD}=4.750$	VLCD $=4.275$	VLCD $=3.800$	VLCD $=2.850$	[V]
3	0.925*VDD	$\mathrm{VLCD}=5.550$	VLCD $=5.088$	$\mathrm{VLCD}=4.625$	VLCD $=4.163$	VLCD $=3.700$	VLCD $=2.775$	[V]
4	0.900*VDD	VLCD $=5.400$	VLCD 4.950	$\mathrm{VLCD}=4.500$	VLCD $=4.050$	VLCD $=3.600$	$\mathrm{VLCD}=2.700$	[V]
5	0.875*VDD	VLCD $=5.250$	VLCD $=4.813$	VLCD $=4.375$	VLCD $=3.938$	VLCD $=3.500$	$\mathrm{VLCD}=2.625$	[V]
6	0.850*VDD	VLCD $=5.100$	VLCD $=4.675$	VLCD $=4.250$	VLCD $=3.825$	VLCD $=3.400$	$\mathrm{VLCD}=2.550$	[V]
7	0.825*VDD	VLCD $=4.950$	VLCD $=4.538$	VLCD $=4.125$	VLCD $=3.713$	VLCD $=3.300$	$\mathrm{VLCD}=2.475$	[V]
8	0.800*VDD	VLCD $=4.800$	VLCD $=4.400$	VLCD $=4.000$	VLCD $=3.600$	VLCD $=3.200$	VLCD $=2.400$	[V]
9	0.775*VDD	VLCD $=4.650$	VLCD $=4.263$	VLCD $=3.875$	VLCD $=3.488$	VLCD $=3.100$	$\mathrm{VLCD}=2.325$	[V]
10	0.750*VDD	VLCD $=4.500$	VLCD $=4.125$	VLCD $=3.750$	VLCD $=3.375$	VLCD $=3.000$	VLCD $=2.250$	[V]
11	0.725*VDD	VLCD $=4.350$	VLCD $=3.988$	VLCD $=3.625$	VLCD $=3.263$	VLCD $=2.900$	VLCD $=2.175$	[V]
12	0.700*VDD	VLCD $=4.200$	VLCD $=3.850$	VLCD $=3.500$	VLCD $=3.150$	VLCD $=2.800$	VLCD $=2.100$	[V]
13	0.675*VDD	VLCD $=4.050$	VLCD $=3.713$	VLCD $=3.375$	VLCD $=3.038$	VLCD $=2.700$	VLCD $=2.025$	[V]
14	0.650*VDD	VLCD $=3.900$	VLCD $=3.575$	VLCD $=3.250$	VLCD $=2.925$	VLCD $=2.600$	VLCD $=1.950$	[V]
15	0.625*VDD	VLCD $=3.750$	VLCD $=3.438$	VLCD $=3.125$	VLCD $=2.813$	VLCD $=2.500$	$\mathrm{VLCD}=1.875$	[V]

[^0]: (Note8) DD is direction data.

[^1]: (Note14) DD is direction data.

[^2]: (Note16) DD is direction data.

[^3]: (Note18)fosc: Internal Oscillation Frequency (600 [kHz] Typ)

