: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Standard LCD Segment Drivers

- Features
- Integrated RAM for display data (DDRAM) : 35×4 bit (Max 140 Segment)
- LCD drive output:

4 Common output, Max 35Segment output

- Integrated Buffer AMP for LCD driving
- Integrated Oscillator circuit
- No external components

■ Low power consumption design

- Applications

■ Telephone

- FAX
- Portable equipment (POS, ECR, PDA etc.)
- DSC
- DVC
- Car audio
- Home electrical appliance
- Meter equipment
etc.
+2.5 V to +5.5 V $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ 140 Segments

1/2,1/3 selectable 3 wire serial interface
1/4

OKey Specifications

- Supply Voltage Range:
- Operating Temperature Range:

Max Segments:

- Display Duty:

■ Bias:

- Interface:
-Packages
W (Typ.) x D (Typ.) x H (Max.)

- Typical Application Circuit

Figure 1. Typical application circuit

Figure 2. Block Diagram

Figure 3. Pin Configuration (TOP VIEW)

Table 1 Pin Description

Pin name	Pin No.	I/O	Function
INHb	13	I	Input terminal for turn off display H: turn on display : turn off display
TEST	12	I	Test input (ROHM use only) Must be connect to VSS
OSCIN	7	I	External clock input Ex clock and Int clock can be changed by command. Must be connect to VSS when use internal oscillation circuit.
SD	10	I	serial data input
SCL	9	I	serial data transfer clock
CSB	8	I	Chip select :L" active
VSS	6		GND
VDD	5	Power supply	
SEGO-34	$14-28$, $30-36$ $38-50$	O	SEGMENT output for LCD driving
COM0-3	$5-52$, $1-2$	O	COMMON output for LCD driving

- Absolute Maximum Ratings (VSS=0V)

Parameter	Symbol	Ratings	Unit	Remark
Power supply voltage1	VDD	-0.5 to +7.0	V	Power supply
Power supply voltage2	VLCD	-0.5 to VDD	V	LCD drive voltage
Power dissipation	Pd	0.85	W	When use more than $\mathrm{Ta}=25^{\circ} \mathrm{C}$, subtract 8.5 mW per degree (Package only)
Input voltage range	VIN	-0.5 to VDD +0.5	V	
Operational temperature range	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$	
Storage temperature range	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

- Recommended Operating Ratings $\left(\mathrm{Ta}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{VSS}=0 \mathrm{~V}$)

Parameter	Symbol	Ratings			Unit	Remark	
		Min.	Typ.	Max.		Power supply	
Power Supply voltage1	VDD	2.5	-	5.5	V	Pown	
Power Supply voltage2	VLCD	0	-	VDD -2.4	V	LCD drive voltage	

* Please use VDD-VLCD $\geq 2.4 \mathrm{~V}$ condition.
- Electrical Characteristics

DC Characteristics (VDD $=2.5 \mathrm{~V}$ to 5.5 V , $\mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise specified)

Parameter		Symbol	Limits			Unit	Conditions	
		MIN	TYP	MAX				
"H" level input voltage			VIH	0.7VDD	-	VDD	V	
"L" level input voltage		VIL	VSS	-	0.3VDD	V		
"H" level input current		IIH	-	-	1	$\mu \mathrm{A}$		
"L" level input current		IIL	-1	-	-	$\mu \mathrm{A}$		
LCD Driver on resistance	SEG	RON	-	3.5	-	$k \Omega$	lload $= \pm 10 \mu \mathrm{~A}$	
	COM	RON	-	3.5	-	k Ω		
VLCD supply voltage		VLCD	0	-	VDD -2.4	V	VDD-VLCD $\geq 2.5 \mathrm{~V}$	
Standby current		Ist	-	-	5	$\mu \mathrm{A}$	Display off, Oscillator off	
Power consumption 1		IDD1	-	12.5	30	$\mu \mathrm{A}$	$\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Power save mode1, FR=70Hz 1/3 bias, Frame inverse	
Power consumption 2		IDD2	-	20	40	$\mu \mathrm{A}$	$\mathrm{VDD}=3.3 \mathrm{~V}, \mathrm{Ta}=25^{\circ} \mathrm{C}$, Normal mode, FR=80Hz $1 / 3$ bias, Line inverse	

- Electrical Characteristics - continued

Oscillation Characteristics (VDD $=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter		Symbol	Limits			Unit	
			MIN	TYP	MAX		
Frame frequency	fcLk	56	80	104	Hz	$\mathrm{FR}=80 \mathrm{~Hz}$ setting	
Frame frequency1	fcLK1	70	80	90	Hz	$\mathrm{VDD}=3.5 \mathrm{~V}, 25^{\circ} \mathrm{C}$	

MPU interface Characteristics(VDD $=2.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Limits			Unit	Conditions
		MIN	TYP	MAX		
Input rise time	tr	-	-	80	ns	
Input fall time	tf	-	-	80	ns	
SCL cycle time	tSCYC	400	-	-	ns	
"H" SCL pulse width	tSHW	100	-	-	ns	
"L" SCL pulse width	tSLW	100	-	-	ns	
SD setup time	tSDS	20	-	-	ns	
SD hold time	tSDH	50	-	-	ns	
CSB setup time	tCSS	50	-	-	ns	
CSB hold time	tCSH	50	-	-	ns	
"H" CSB pulse width	tCHW	50	-	-	ns	

Figure 4. Interface Timing

- I/O equivalent circuit

Figure 5. I/O equivalent circuit

- Example of recommended circuit

Using internal oscillator circuit mode

Using external oscillator mode

Figure 6. Recommended circuit

-Function Description

OCommand and data transfer method

O3-SPI (3wire Serial interface)
This device is controlled by 3 -wire signal (CSB, SCL, and SD).
First, Interface counter is initialized with CSB="H", and CSB="L" makes SD and SCL input enable.
The protocol of 3-SPI transfer is as follows.
Each command starts with Command or Data judgment bit (D/C) as MSB data, followed by D6 to D0 during CSB ="L".
(Internal data is latched at the rising edge of SCL, it is converted to 8bits parallel data at the falling edge of 8th CLK.)

Figure 7. 3-SPI Command/Data transfer format

OCommand transfer method
After CSB="H" \rightarrow "L", 1st byte is always a command input.
MSB of the command input data will be judged that the next byte data, it is a command or display data (This bit is called "command or data judgment bit").
When set "command or data judge bit"=' 1 ', next byte will be (continuously) command.
When set "command or data judge bit"='0', next byte data is display data.

Once it becomes display data transfer condition, it will not be back to command input condition even if $\mathrm{D} / \mathrm{C}=1$.
So if you want to send command data again, please set CSB="L" \rightarrow "H".
(CSB "L" \rightarrow "H" will cancel data transfer condition.)
Command transfer is done by 8bits unit, so if $\mathrm{CSB}=$ " $\mathrm{L} " \rightarrow$ " H " with less than 8bits data transfer, command will be cancelled.
It will be able to transfer command with $\mathrm{CSB}=$ " L " again.

Figure 8. Command transfer format

OWrite display data and transfer method
This LSI has Display Data RAM (DDRAM) of $35 \times 4=140$ bit.
The relationship between data input and display data, DDRAM data and address are as follows.

8 bit data will be stored in DDRAM. The address to be written is the address specified by ADSET command, and the address is automatically incremented in every 4bit data.
Data can be continuously written in DDRAM by transmitting Data continuously.
(When RAM data is written successively after writing RAM data to 22 h (SEG34), the address is returned to 00h (SEGO) by the auto-increment function.

As data transfer to DDRAM happens every 4bit data, it will be cancelled if it changes CSB="L" \rightarrow " H " before 4bits data transfer.

Figure 9. Data Transfer Format

OOSCILLATOR
There are two kinds of clock for logic and analog circuit; from internal oscillator circuit or external clock input. If internal oscillator circuit will be used, OSCIN must be connected to VSS.
*When you use external clock, execute ICSET command and connect OSCIN to external clock.

Figure 10. Internal oscillator circuit mode

Figure 11. External clock mode

OLCD Driver Bias Circuit

This LSI generates LCD driving voltage with on-chip Buffer AMP.
And it can drive LCD at low power consumption.

* $1 / 3$ and $1 / 2$ Bias can be set in MODESET command.
*Line and frame inversion can be set in DISCTL command.
Refer to "LCD driving waveform" about each LCD driving waveform.

OBlink timing generator
This device has Blinking function.
*This LSI is able to set blink mode with BLKCTL command.
Blink frequency varies widely by characteristic of fCLK, when internal oscillation circuit.
Refer to Oscillation Characteristics for more details on fCLK.

OReset (initial) condition
Initial condition after execute SOFTWARE RESET is as follows.

- Display is OFF.
- DDRAM address is initialized (DDRAM Data is not initialized).

Refer to Command Description about initialize value of register.

- Command / Function List

Description List of Command / Function

No.	Command	Function
1	Mode Set (MODESET)	Set LCD drive mode
2	Address Set (ADSET)	Set LCD display mode 1
3	Display Control (DISCTL)	Set LCD display mode 2
4	Set IC Operation (ICSET)	Set IC operation
5	Blink Control (BLKCTL)	Set blink mode
6	All Pixel Control (APCTL)	Set pixel condition

-Detailed Command Description

D7 (MSB) is bit for command or data judgment.
Refer to Command and data transfer method.
C: 0 : Next byte is RAM write data.
1 : Next byte is command.
OMode Set (MODE SET)
MSB

D7	D6	D5	D4	D3	D2	D1	D0
C	1	0	${ }^{*}$	P3	P2	${ }^{*}$	${ }^{*}$

(*: Don’t care)
Set display ON and OFF

Setting	P3	Reset initialize condition
Display OFF(DISPOFF)	0	O
Display ON(DISPON)	1	

Display OFF : Regardless of DDRAM data, all SEGMENT and COMMON output will be stopped after 1 frame of data write. Display OFF mode will be finished by Display ON.
Display ON : SEGMENT and COMMON output will be active and start to read the display data from DDRAM.
(Note) It is not synchronize with display frame, when it will be controlled display ON/OFF with INHD terminal.
Set bias level

Setting	P2	Reset initialize condition
$1 / 3$ Bias	0	O
$1 / 2$ Bias	1	

Refer to LCD driving waveform.
OAddress set (ADSET)
MSB

D7	D6	D 5	D4	D3	D2	D1	D0
C	0	0	P4	P3	P2	P1	P0

Address data is specified in $\mathrm{P}[4$: 0$]$ and P 2 (ICSET command) as follows.

Internal register	Address [5]	Address [4]	$\cdots \cdots$	Address [0]
Bit of each command	ICSET [P2]	ADSET [P4]	$\cdots \cdots$	ADSET [P0]

The address is 00 h in reset condition. The valid address is 00 h to 22 h .
Another address is invalid, (otherwise address will be set to 00h.)
P2 of ICSET command is only to define either MSB of address is " 1 " or " 0 ".
Address counter will be set only when ADSET command is executed.

(4)

Figure 12. Address Set sequence

ODisplay control (DISCTL)
MSB

D7	D6	D5	D4	D3	D2	D1	D0
C	0	1	P4	P3	P2	P1	P0

Set Frame frequency

Setting	P4	P3	Reset initialize condition
80 Hz	0	0	O
71 Hz	0	1	
64 Hz	1	0	
53 Hz	1	1	

* About the characteristics of FR, refer to Oscillation characteristics.

Set LCD drive waveform

Setting	P2	Reset initialize condition
Line inversion	0	O
Frame inversion	1	

Set Power save mode

Setting	P1	P0	Reset initialize condition
Power save mode 1	0	0	
Power save mode 2	0	1	
Normal mode	1	0	O
High power mode	1	1	

*VDD-VLCD $\geq 3.0 \mathrm{~V}$ is required for High power mode.
(Reference current consumption data)

Setting	Reset initialize condition
Power save mode 1	$\times 0.5$
Power save mode 2	$\times 0.67$
Normal mode	$\times 1.0$
High power mode	$\times 1.8$

*Above current consumption data is reference value. It depends on panel load.
(Note) Frame rate FR / LCD drive waveform / Power save mode SR will effect display image.
Select the best value in point of current consumption and display image using LCD panel (under real application).

Mode	Screen flicker	Display image / contrast
Frame frequency	O	-
LCD drive waveform	O	O
Power save mode	-	O

OSet IC Operation (ICSET)
MSB

D7	D6	D5	D4	D3	D2	D1	D0
C	1	1	0	1	P2	P1	P0

P2 : MSB data of DDRAM address. Please refer to "ADSET" command.

Setting	P2	Reset initialize condition
Address MSB'0'	0	O
Address MSB'1'	1	

Set Software Reset condition

Setting	P1
No operation	0
Software Reset	1

When "Software Reset" is executed, this LSI will be reset to initial condition.
If software reset is executed, the value of P2 and P1 will be ignored and they will be set initialized condition. (Refer to "Reset initial condition")

Switch between internal clock and external clock.

Setting	P0	Reset initialize condition
Internal clock	0	O
External clock input	1	

For internal clock : OSCIN is connected to VSS.
For external clock input : Input external clock into OSCIN.
<external Clock Frame frequency calculation>
DISCTL 80Hz select : Frame frequency [Hz] = external clock[Hz] / 512
DISCTL 71 Hz select : Frame frequency [Hz] = external clock[Hz] / 576
DISCTL 64 Hz select : Frame frequency [Hz] = external clock[Hz] / 648
DISCTL 53 Hz select : Frame frequency $[\mathrm{Hz}]=$ external clock[Hz] / 768

Command

OSCIN_EN
(Internal signal)

Internal oscillation
(Internal signal)

\qquad

External clock (OSCIN)

Figure 13. OSCMODE switching timing

OBlink control (BLKCTL)
MSB

D7	D6	D5	D4	D3	D2	D1	D0
C	1	1	1	0	${ }^{*}$	P1	P0

Set blink condition

Setting (Hz)	P1	P0	Reset initialize condition
OFF	0	0	O
0.5	0	1	
1	1	0	
2	1	1	

OAll pixel control (APCTL)
MSB

D7	D6	D5	D4	D3	D2	D1	D0
C	1	1	1	1	1	P1	P0

All display set ON. OFF

Setting	P1	Reset initialize condition
Normal	0	O
All pixel ON	1	

Setting	P0	Reset initialize condition
Normal	0	O
All pixel OFF	1	

All pixels ON : All pixels are ON regardless of DDRAM data.
All pixels OFF : All pixels are OFF regardless of DDRAM data.
(Note) All pixels ON/OFF is effective only at the time of "Display ON" status.
The data of DDRAM do not change with this command.
If both P1 and P0='1', APOFF is selected. APOFF has higher priority than APON.

-LCD driving waveform

(1/3bias)
Line inversion

Figure 14. Line inversion waveform(1/3bias)

Frame inversion

Figure 15. Frame inversion waveform(1/3bias)
(1/2bias)
Line inversion

Figure 16. Line inversion waveform(1/2bias)

Frame inversion

Figure 17. Frame inversion waveform(1/2bias)

- Example of display data

If LCD layout pattern is shown as in Figure28, Figure29 and DDRAM data is shown as in Table 5, display pattern will be shown as in Figure 30.

Figure 18. Example COM line pattern

Figure 19. Example SEG line pattern

Figure 20. Example Display pattern

Table 5. DDRAM Data map

		$\begin{gathered} \mathrm{S} \\ \mathrm{E} \\ \mathrm{G} \\ 0 \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \\ & \mathrm{G} \\ & 1 \end{aligned}$	G	$\begin{gathered} S \\ \mathrm{E} \\ \mathrm{G} \\ 3 \end{gathered}$	G	$\begin{gathered} S \\ \mathrm{E} \\ \mathrm{G} \\ 5 \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \\ & \mathrm{G} \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \\ & \mathrm{G} \\ & 7 \end{aligned}$	$\begin{gathered} \mathrm{S} \\ \mathrm{E} \\ \mathrm{G} \\ 8 \end{gathered}$	$\begin{aligned} & \mathrm{S} \\ & \mathrm{E} \\ & \mathrm{G} \\ & 9 \end{aligned}$	$\begin{gathered} S \\ E \\ G \\ 10 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{E} \\ \mathrm{G} \\ 11 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{E} \\ \mathrm{G} \\ 12 \end{gathered}$	$\begin{gathered} S \\ \mathrm{E} \\ \mathrm{G} \\ 13 \end{gathered}$	$\begin{gathered} S \\ E \\ G \\ G \end{gathered}$	$\begin{gathered} S \\ E \\ G \\ G \end{gathered}$	$\begin{gathered} S \\ E \\ G \\ G \end{gathered}$	$\begin{gathered} S \\ E \\ G \\ 17 \end{gathered}$	$\begin{gathered} \mathrm{S} \\ \mathrm{E} \\ \mathrm{G} \\ 18 \end{gathered}$	$\begin{gathered} S \\ \mathrm{E} \\ \mathrm{G} \\ 19 \end{gathered}$
COM0	D0	0	1	1	0	1	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
COM1	D1	0	0	1	1	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0
COM2	D2	0	0	0	1	0	1	0	0	1	0	1	0	0	0	0	0	0	0	0	0
COM3	D3	0	0	1	1	0	0	0	1	0	1	0	0	0	0	0	0	0	0	0	0

Address
OOh 01h 02h 03h 04h 05h 06h 07h 08h 09h 0Ah OBh OCh ODh OEh OFh 10h 11h 12h 13h

- Initialize sequence

Please follow sequence below after Power-On to set this device to initial condition.

Power on\downarrow		
CSB		
CSB	'L'	...I/F Data transfer start
Execute		ware Reset by sending ICS

* Each register value and DDRAM address, DDRAM data are random condition after power on till initialize sequence is executed.

-Start sequence

OStart sequence example 1

No.	Input	D7	D6	D5	D4	D3	D2	D1	D0	Descriptions
1	Power on									$\mathrm{VDD}=0$ to 5 V ($\mathrm{Tr}=0.1 \mathrm{~ms}$)
	\downarrow									
2	wait 100us									Initialize IC
	\downarrow									
3	CSB 'H'									Initialize I/F data
	\downarrow									
4	CSB 'L'									I/F Data transfer start
	\downarrow									
5	ICSET	1	1	1	0	1	*	1	0	Software Reset
	\downarrow									
6	BLKCTL	1	1	1	1	0	*	0	1	
	\downarrow									
7	DISCTL	1	0	1	0	0	1	1	0	
	\downarrow									
8	ICSET	1	1	1	0	1	0	0	0	RAM address MSB set
	\downarrow									
9	ADSET	0	0	0	0	0	0	0	0	RAM address set
	\downarrow									
10	Display Data	*	*	*	*	*	*	*	*	address 00h to 01h
	Display Data	*	*	*	*	*	*	*	*	address 02h to 03h
	:									:
	Display Data	*	*	*	*	*	*	*	*	address 22h to 00h
	\downarrow									
11	CSB 'H'									I/F Data transfer stop
	\downarrow									
12	CSB 'L'									I/F Data transfer start
	\downarrow									
13	MODESET	1	1	0	*	1	0	*	*	Display ON
	\downarrow									
14	CSB 'H'									I/F Data transfer stop

OStart sequence example 2

Initialize Sequence

DISPON Sequence

RAM write Sequence

DISPOFF Sequence

This LSI is initialized with Initialize Sequence. And start to display with DISPON Sequence.
This LSI will update display data with RAM write Sequence.
And stop the display with DISPOFF sequence.
If you want to restart to display, This LSI will restart to display with DISPON Sequence.
Initialize sequence

DISPON sequence

Input	DATA					Description			
	D7 D6 D5 D4 D3 D2 D1 D0								
CSB 'L'						1	1		
DISCTL	1	0	1	1	1	1	1	Display Control	
BLKCTL	1	1	1	1	0	0	0	0	BLKCTL
APCTL	1	1	1	1	1	1	0	0	APCTL
MODESET	1	1	0	0	1	0	0	0	Display ON
CSB 'H'									

RAM write sequence

Input	DATA	Description
	D7 D6 D5 D4 D3 D2 D1 D0	
CSB 'L'		
DISCTL	$\begin{array}{llllllll}1 & 0 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$	Display Control
BLKCTL	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 0 & 0 & 0 & 0\end{array}$	BLKCTL
APCTL	$\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 0 & 0\end{array}$	APCTL
MODESET	$\begin{array}{llllllll}1 & 1 & 0 & 0 & 1 & 0 & 0 & 0\end{array}$	Display ON
ADSET	000000000000	RAM address set
Display Data	* * * * * * * *	Display data
csB 'H'		

DISPOFF sequence

Input	DATA				Description					
	D7 D6 D5 D4 D3 D2 D1 D0									
CSB 'L' MODESET CSB 'H'	1	1	0	0	0	0	0	0	$⿻$	Display OFF
:---:										

- Example of start sequence

-Cautions on Power ON condition

This LSI has "P.O.R" (Power-On Reset) circuit and Software Reset function.
Please keep the following recommended Power-On conditions in order to power up properly.
Please set power up conditions to meet the recommended tR, tF, tOFF, and Vbot spec below in order to ensure P.O.R operation.

Recommended condition of tR,tF,tOFF, Vbot

tR	tF	tOFF	Vbot
Less than 1 ms	Less than 1 ms	More than 150 ms	Less than 0.1 V

Figure 21. Power ON/OFF waveform

If it is difficult to meet above conditions, execute the following sequence after Power-On.
Command input is not accepted during power off. It has to take care that software reset is not a perfect substitute to POR function.
(1) $\mathrm{CSB}=$ "L" \rightarrow " H " condition

Figure 22. CSB Timing
(2) After CSB"H" \rightarrow "L", execute Software Reset (ICSET command).

-Cautions on application

In case, BU9795ZKS used at VLCD \neq VSS, voltage gap occur between SEG line to COM1-3 line at Display off state. Because of this voltage gap, there is possibility to display LCD for a moment.
To avoid this phenomenon, please decide VDD and VLCD level to satisfy Voff voltage lower than OFF level (OFF level =1V at the example explained below).

-Operational Notes

(1) Absolute Maximum Ratings

Operating the IC over the absolute maximum ratings may damage the $I C$. The damage can either be a short circuit between pins or an open circuit between pins. Therefore, it is important to consider circuit protection measures, such as adding a fuse, in case the IC is operated over the absolute maximum ratings.
(2) Recommended Operating conditions

These conditions represent a range within which the expected characteristics of the IC can be approximately obtained. The electrical characteristics are guaranteed under the conditions of each parameter.
(3) Reverse Connection of Power Supply

Connecting the power supply in reverse polarity can damage the IC. Take precautions against reverse polarity when connecting the power supply, such as mounting an external diode between the power supply and the IC's power supply terminals.
(4) Power Supply Lines

Design the PCB layout pattern to provide low impedance ground and supply lines. Separate the ground and supply lines of the digital and analog blocks to prevent noise in the ground and supply lines of the digital block from affecting the analog block. Furthermore, connect a capacitor to ground at all power supply pins. Consider the effect of temperature and aging on the capacitance value when using electrolytic capacitors.
(5) Ground Voltage

The voltage of the ground pin must be the lowest voltage of all pins of the IC at all operating conditions. Ensure that no pins are at a voltage below the ground pin at any time, even during transient condition.
(6) Short between Pins and Mounting Errors

Be careful when mounting the IC on printed circuit boards. The IC may be damaged if it is mounted in a wrong orientation or if pins are shorted together. Short circuit may be caused by conductive particles caught between the pins.
(7) Operation under Strong Electromagnetic Field

Operating the IC in the presence of a strong electromagnetic field may cause the IC to malfunction.
(8) Testing on Application Boards

When testing the IC on an application board, connecting a capacitor directly to a low-impedance output pin may subject the IC to stress. Always discharge capacitors completely after each process or step. The IC's power supply should always be turned off completely before connecting or removing it from the test setup during the inspection process. To prevent damage from static discharge, ground the IC during assembly and use similar precautions during transport and storage.
(9) Regarding Input Pins of the IC

In the construction of this IC, $\mathrm{P}-\mathrm{N}$ junctions are inevitably formed creating parasitic diodes or transistors. The operation of these parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Therefore, conditions which cause these parasitic elements to operate, such as applying a voltage to an input pin lower than the GND voltage should be avoided. Furthermore, do not apply a voltage to the input terminals when no power supply voltage is applied to the IC. Even if the power supply voltage is applied, make sure that the input terminals have voltages within the values specified in the electrical characteristics of this IC.
(10) GND Wiring Pattern

When using both small-signal and large-current GND traces, the two ground traces should be routed separately but connected to a single ground at the reference point of the application board to avoid fluctuations in the small-signal ground caused by large currents. Also ensure that the GND traces of external components do not cause variations on the GND voltage. The power supply and ground lines must be as short and thick as possible to reduce line impedance.
(11) External Capacitor

When using a ceramic capacitor, determine the dielectric constant considering the change of capacitance with temperature and the decrease in nominal capacitance due to DC bias and others.
(12) Unused Input Terminals

Input terminals of an IC are often connected to the gate of a CMOS transistor. The gate has extremely high impedance and extremely low capacitance. If left unconnected, the electric field from the outside can easily charge it. The small charge acquired in this way is enough to produce a significant effect on the conduction through the transistor and cause unexpected operation of IC. So unless otherwise specified, input terminals not being used should be connected to the power supply or ground line.
(13) Rush current

When power is first supplied to the IC, rush current may flow instantaneously. It is possible that the charge current to the parasitic capacitance of internal photo diode or the internal logic may be unstable. Therefore, give special consideration to power coupling capacitance, power wiring, width of GND wiring, and routing of connections.

Ordering Information

$\begin{array}{llllllllll}\text { B } & \text { U } & 9 & 7 & 9 & 5 & Z & K & \text { S } & 2\end{array}$

- Lineup

Package		Orderable Part Number
SQFP-T52	Tray of 1000	BU9795ZKS2

Physical Dimension, Tape and Reel Information

0. 125 ± 0.1
(UN I T : mm)
PKG: SQF P-T 52
Drawing No. B0033

- Marking Diagrams

SQFP-T52 (TOP VIEW)

