Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China # **BUK1M200-50SDLD** # Quad channel TOPFET™ Rev. 01 — 02 April 2003 Product data ### **Product profile** ### 1.1 Description Quad temperature and overload protected logic level power MOSFET in TOPFET™ technology in a 20-pin surface mount plastic package. Product availability: BUK1M200-50SDLD in SOT163-1 (SO20). #### 1.2 Features - Power TrenchMOS™ - Overtemperature protection - Overload protection - Input-source voltage resets latched protection circuitry. - supply overload protection circuits - 5 V logic compatible input level - Current limiting - ESD protection for all pins - Overfatigue clamping for turn off of inductive loads - Input used to control output stage and Low operating input current permits direct drive by micro-controller. ### 1.3 Applications - Low-side driver - Low frequency Pulse Width Modulation - DC switching - General purpose switch for driving lamps, motors, solenoids and heaters. #### 1.4 Quick reference data Quick reference data Table 1: | Symbol | Parameter | | Min | Max | Unit | |-------------------|----------------------------------|-----|-----|-----|-------| | R _{DSon} | drain-source on-state resistance | | - | 200 | m $Ω$ | | P _{tot} | total power dissipation | [1] | - | 9.4 | W | | T _j | junction temperature | | - | 150 | °C | | V _{DS} | drain-source voltage | | - | 50 | V | [1] All devices active ## 2. Pinning information ### 2.1 Pin description Table 2: Pin description | | - | | |--------|---------------|---------------| | Symbol | Pin | Description | | n.c. | 1, 11, 10, 20 | not connected | | D1 | 2,19 | drain 1 | | l1 | 3 | input 1 | | D2 | 4,17 | drain 2 | | 12 | 5 | input 2 | | D3 | 6,15 | drain 3 | | 13 | 7 | input 3 | | D4 | 8, 13 | drain 4 | | 14 | 9 | input 4 | | S4 | 12 | source 4 | | S3 | 14 | source 3 | | S2 | 16 | source 2 | | S1 | 18 | source 1 | | | | | ## 3. Block diagram ### 4. Limiting values Table 3: Limiting values In accordance with the Absolute Maximum Rating System (IEC 60134). | Symbol | Parameter | Conditions | | Min | Max | Unit | |-----------------------|---|---|-----|-----|------|------| | V_{DS} | drain-source voltage | | [1] | - | 50 | V | | I _I | input current | clamping | | - | 3 | mA | | P _{tot} | total power dissipation | T _{sp} ≤ 25 °C; Figure 4 | [2] | - | 9.4 | W | | I _{IMS} | non-repetitive peak input current | t _p ≤ 1 ms | | - | 10 | mA | | T _{stg} | storage temperature | | | -55 | +150 | °C | | Tj | junction temperature | normal operation | [3] | - | 150 | °C | | Overvolta | age clamping ^[4] | | | | | | | E _{DS(CL)S} | non-repetitive drain-source clamping energy | T_{amb} = 25 °C; $I_{DM} \le I_{D(lim)}$ (refer to Table 5); inductive load | [5] | - | 100 | mJ | | E _{DS(CL)R} | repetitive drain-source clamping energy | $T_{sp} \le 125~^{\circ}C;~I_{DM} = 50~mA;~f = 250~Hz$ | [5] | - | 5 | mJ | | Overload | protection [6] | | | | | | | V _{DS(prot)} | protected drain-source voltage | $V_{IS} \ge 4 V$ | | - | 35 | V | | Reverse | diode | | | | | | | Is | source (diode forward) current | $T_{sp} \le 25 ^{\circ}C; V_{IS} = 0 V$ | | - | 2 | Α | | Electrost | atic discharge | | | | | | | V _{esd} | electrostatic discharge voltage | $C = 250 \text{ pF}; R = 1.5 \text{ k}\Omega$ | | - | 2 | kV | ^[1] Prior to the onset of overvoltage clamping. For voltages above this value, safe operation is limited by the overvoltage clamping energy. ^[2] For all devices active. ^[3] Not in an overload condition with drain current limiting. ^[4] At a drain-source voltage above 50 V the power MOSFET is actively turned on to clamp overvoltage transients. ^[5] Single active device. ^[6] With the protection supply provided via the input pin, the TOPFET is protected from short circuit loads. Overload protection operates by means of drain current limiting and by activating the overtemperature protection. $$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$ Fig 4. Normalized total power dissipation as a function of solder point temperature. ### 5. Thermal characteristics Table 4: Thermal characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |----------------|-------------------------------------|------------------------------|-----|-----|------|------| | $R_{th(j-sp)}$ | thermal resistance from junction to | mounted on thermo clad board | | | | | | | solder point. | one device active | - | - | 45 | K/W | | | | all devices active | - | - | 13.3 | K/W | ### 6. Static characteristics **Table 5: Static characteristics** Limits are valid for $-40\,^{\circ}C \le T_{sp} \le +150\,^{\circ}C$ and typical values for $T_{sp} = 25\,^{\circ}C$ unless otherwise specified. | Symbol | Parameter | Conditions | | Min | Тур | Max | Uni | |-------------------------|--------------------------------------|---|-----|-----|------|-----|-----| | Off-state | output characteristics | | | | | | | | V _{DS(CL)} | drain-source clamping voltage | $V_{IS} = 0 \text{ V}; I_D = 10 \text{ mA}$ | | 50 | - | - | V | | | | $\begin{split} &V_{IS} = 0 \text{ V; } I_D = 200 \text{ mA; } t_p \leq 300 \mu\text{s;} \\ &\delta \leq 0.01; \text{ Figure 16} \end{split}$ | | 50 | 62 | 70 | V | | I _{DSS} | drain-source leakage current | $V_{IS} = 0 \ V; \ V_{DS} = 40 \ V$ | | - | - | 100 | μΑ | | | | T _{sp} = 25 °C; Figure 17 | | - | 0.05 | 10 | μΑ | | On-state | output characteristic | | | | | | | | R _{DSon} | drain-source on-state resistance | $V_{IS} \ge 4$ V; $t_p \le 300$ μs ; $\delta \le 0.01$; $I_D = 100$ mA; Figure 5 and 6 | | - | - | 380 | mΩ | | | | T _{sp} = 25 °C | | - | 150 | 200 | mΩ | | Input cha | aracteristics ^[1] | | | | | | | | V _{IS(th)} | input-source threshold voltage | $V_{DS} = 5 \text{ V}; I_D = 1 \text{ mA}$ | | 0.6 | - | 2.4 | V | | | | T _{sp} = 25 C; Figure 10 | | 1.1 | 1.6 | 2.1 | ٧ | | I_{IS} | input-source current | normal operation | | | | | | | | | $V_{IS} = 5 V$ | | 100 | 220 | 400 | μΑ | | | | V _{IS} = 4 V | | 80 | 195 | 330 | μΑ | | | | protection latched | | | | | | | | | $V_{IS} = 5 V$ | | 200 | 400 | 650 | μΑ | | | | V _{IS} = 3 V; Figure 11 and 12 | | 130 | 250 | 430 | μΑ | | $V_{IS(rst)}$ | input-source reset voltage | t _{rst} ≥ 100 μs; Figure 15 | [2] | 1.5 | 2 | 2.9 | V | | t _{rst(latch)} | latch reset time | | [6] | 10 | 40 | 100 | μs | | V _{IS(CL)} | input-source clamping voltage | I _I = 1.5 mA; Figure 16 | | 5.5 | - | 8.5 | V | | R _{IG} | input-gate resistance | | [3] | - | 33 | - | kΩ | | Overload | d protection characteristic [4] | | | | | | | | I _{D(lim)} | drain current limiting | V _{IS} = 5 V; Figure 18 | | 0.8 | 1.3 | 1.7 | Α | | | | $V_{IS} = 4.5 \text{ V}$ | | 0.7 | - | - | Α | | | | $4 \text{ V} \le V_{IS} \le 5.5 \text{ V};$ | | 0.6 | - | 1.8 | Α | | Short cir | cuit load protection characteristic | es | | | | | | | P _{OV(th)} | overload power threshold | V _{IS} = 5 V | [5] | - | 17 | - | W | | T _{d(sc)} | short circuit response time | V _{IS} = 5 V; Figure 14 | [7] | - | 1.6 | - | ms | | Overtem | perature protection characteristic | ; | | | | | | | T _{j(th)} | threshold junction temperature | 4 V \leq V _{IS} \leq 5.5 V; I _D \geq 280 mA or V _{DS} \geq 100 mV; Figure 9 | | 150 | 165 | - | °C | | Source-o | drain diode characteristic | | | | | | | | V_{SD} | source-drain (diode forward) voltage | $I_S = 2 \text{ A}; V_{IS} = 0 \text{ V}; t_p = 300 \mu\text{s}$ | | - | 0.83 | 1.1 | V | ^[1] The supply for the logic and overload protection is taken from the input. ^[2] The input voltage below which the overload protection circuits will be reset. ^[3] Not directly measurable from the device terminals. - [4] The TOPFET switches off to protect itself when one of the overload thresholds is exceeded. It remains latched off until reset by the input. - [5] Power threshold for protection to operate. - [6] To reset the latched state, the input-source voltage is reduced from 5 V to 1 V. - [7] Trip time $t_{(trip)}$ varies with overload dissipation P_{OV} according to the formula $t_{(trip)} = t_{d(sc)} / [P_{OV} / P_{OV(th)} 1]$ $$a = \frac{R_{DSon}}{R_{DSon(25^{\circ}C)}}$$ $T_i = 25 \, ^{\circ}\text{C}; \, I_D = 100 \, \text{mA}; \, t_p = 300 \, \mu \text{s}$ Fig 5. Normalized drain-source on-state resistance factor as a function of junction temperature. T_j = 25 °C; t_p = 300 μs Fig 7. Output characteristics; drain current as a function of drain-source voltage; typical values. $T_i = 25 \, ^{\circ}C; \, V_{DS} = 10 \, V; \, t_p = 300 \, \mu s$ Fig 8. Transfer characteristics; drain current as a function of input-source voltage; typical values. Fig 9. Overtemperature protection characteristic; threshold junction temperature as a function of input-source voltage; typical values. $I_D = mA; V_{DS} = 5 V$ Fig 10. Input-source threshold voltage as a function of junction temperature. $T_i = 25 \, ^{\circ}C$ - (1) Protection latched. - (2) Normal operation. Fig 11. Input-source current as a function of input-source voltage; typical values. T_i = 25 °C Fig 12. Input clamping characteristic; input current as a function of input-source voltage; typical values. - (1) $V_{IS} = 5 V$; device in latched mode. - (2) $V_{IS} = 3 \text{ V}$; device in latched mode. - (3) V_{IS} = 5 V; device in normal mode. - (4) $V_{IS} = 4 V$; device in normal mode. Fig 13. Input-source current as a function of junction temperature; typical values. $$V_{IS} \ge 4 \ V; \ T_j \le 125 \ ^{\circ}C$$ Fig 14. Reciprocal of short circuit response time as a function of total overload power; single device dissipating; typical values $t_r = 100 \mu s$ Fig 15. Input-source reset voltage as a function of junction temperature; typical values. $V_{IS} = 0 \ V; t_p = 300 \ \mu s$ Fig 16. Overvoltage clamping characteristic; drain current as a function of drain-source voltage; typical values. Fig 17. Drain-source leakage current as a function of junction temperature; typical values. Fig 18. Drain current limiting as a function of solder point temperature. ### 7. Dynamic characteristics Table 6: Switching characteristics | Symbol | Parameter | Conditions | Min | Тур | Max | Unit | |--|---------------------|--|-----|-----|-----|------| | Turn-on measured from the input going HIGH | | | | | | | | t _{d(on)} | turn-on delay time | $R_L = 50~\Omega;~I_D = 250~mA;~V_{IS} = 5~V;$ | - | 5 | 12 | μs | | t _r | rise time | Figure 19 and 20; T _{sp} = 25 °C | - | 11 | 30 | μs | | t _{d(off)} | turn-off delay time | | - | 25 | 65 | μs | | t _f | fall time | | - | 14 | 35 | μs | Fig 19. Test circuit for resistive load switching times. Fig 20. Resistive load switching waveforms. ### 8. Package outline #### SO20: plastic small outline package; 20 leads; body width 7.5 mm SOT163-1 #### Note 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included. | OUTLINE | | REFER | RENCES | EUROPEAN | ISSUE DATE | |----------|--------|--------|--------|------------|---------------------------------| | VERSION | IEC | JEDEC | EIAJ | PROJECTION | ISSUE DATE | | SOT163-1 | 075E04 | MS-013 | | | 97-05-22
99-12-27 | Fig 21. SOT163-1. 9397 750 10956 ## 9. Revision history #### Table 7: Revision history | Rev | Date | CPCN | Description | |-----|----------|------|------------------------------------| | 01 | 20030402 | - | Product datasheet (9397 750 10956) | #### 10. Data sheet status | Level | Data sheet status ^[1] | Product status ^{[2][3]} | Definition | |-------|----------------------------------|----------------------------------|--| | 1 | Objective data | Development | This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. | | II | Preliminary data | Qualification | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. | | III | Product data | Production | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). | - [1] Please consult the most recently issued data sheet before initiating or completing a design. - [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com. - [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status. #### 11. Definitions **Short-form specification** — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook. Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability. **Application information** — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. #### 12. Disclaimers **Life support** — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application. Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. #### 13. Trademarks **TOPFET** — is a trademark of Koninklijke Philips Electronics N.V. **TrenchMOS** — is a trademark of Koninklijke Philips Electronics N.V. ### **Contact information** For additional information, please visit http://www.semiconductors.philips.com. For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com. Fax: +31 40 27 24825 # **BUK1M200-50SDLD** **Quad channel TOPFET™** ### **Contents** | 1 | Product profile | |-----|-------------------------| | 1.1 | Description | | 1.2 | Features | | 1.3 | Applications | | 1.4 | Quick reference data | | 2 | Pinning information | | 2.1 | Pin description | | 3 | Block diagram | | 4 | Limiting values | | 5 | Thermal characteristics | | 6 | Static characteristics | | 7 | Dynamic characteristics | | 8 | Package outline 11 | | 9 | Revision history12 | | 10 | Data sheet status | | 11 | Definitions 13 | | 12 | Disclaimers13 | | 13 | Trademarks13 | ## © Koninklijke Philips Electronics N.V. 2003. Printed in The Netherlands All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights. Document order number: 9397 750 10956 Date of release: 02 April 2003