: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

BUL146G, BUL146FG

SWITCHMODE ${ }^{\text {m }}$ NPN Bipolar Power Transistor For Switching Power Supply Applications

The BUL146G / BUL146FG have an applications specific state-of-the-art die designed for use in fluorescent electric lamp ballasts to 130 W and in Switchmode Power supplies for all types of electronic equipment.

Features

- Improved Efficiency Due to Low Base Drive Requirements:
- High and Flat DC Current Gain
- Fast Switching
- No Coil Required in Base Circuit for Turn-Off (No Current Tail)
- Full Characterization at $125^{\circ} \mathrm{C}$
- Two Packages Choices: Standard TO-220 or Isolated TO-220
- Parametric Distributions are Tight and Consistent Lot-to-Lot
- BUL146F, Case 221D, is UL Recognized to 3500 V RMS : File \# E69369
- These Devices are $\mathrm{Pb}-$ Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	$\mathrm{V}_{\text {CEO }}$	400	Vdc
Collector-Base Breakdown Voltage	$\mathrm{V}_{\text {CES }}$	700	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	9.0	Vdc
$\begin{array}{ll} \hline \text { Collector Current } & - \text { Continuous } \\ & - \text { Peak (Note 1) } \end{array}$	$\begin{gathered} \mathrm{I}_{\mathrm{C}} \\ \mathrm{I}_{\mathrm{CM}} \end{gathered}$	$\begin{aligned} & 6.0 \\ & 15 \end{aligned}$	Adc
Base Current - Continuous - Peak (Note 1)	$\begin{gathered} \mathrm{I}_{\mathrm{B}} \\ \mathrm{I}_{\mathrm{BM}} \end{gathered}$	$\begin{aligned} & 4.0 \\ & 8.0 \end{aligned}$	Adc
RMS Isolation Voltage (Note 2) (for 1 sec, R.H. $<30 \%, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)	$V_{\text {ISOL1 }}$ VISOL2 $V_{\text {ISOL3 }}$	$\begin{gathered} \text { BUL146F } \\ 4500 \\ 3500 \\ 1500 \end{gathered}$	V
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ BUL146 BUL146F Derate above $25^{\circ} \mathrm{C}$ BUL146 BUL146F	P_{D}	$\begin{gathered} 100 \\ 40 \\ 0.8 \\ 0.32 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case			
BUL146 BUL146F	$\mathrm{R}_{\theta \mathrm{JC}}$		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction-to-Ambient	$\mathrm{R}_{\theta \mathrm{JA}}$	62.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds	T_{L}	260	${ }^{\circ} \mathrm{C}$

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. Pulse Test: Pulse Width $=5 \mathrm{~ms}$, Duty Cycle $\leq 10 \%$.
2. Proper strike and creepage distance must be provided.

ON Semiconductor ${ }^{\text {® }}$

http://onsemi.com

POWER TRANSISTOR
8.0 AMPERES
1000 VOLTS
45 and 125 WATTS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 8 of this data sheet.

[^0]ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Sustaining Voltage ($\mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}, \mathrm{~L}=25 \mathrm{mH}$)	$\mathrm{V}_{\text {CEO }}$ (sus)	400	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=$ Rated $\left.\mathrm{V}_{\mathrm{CEO}}, \mathrm{I}_{\mathrm{B}}=0\right)$	ICEO	-	-	100	$\mu \mathrm{Adc}$
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=$ Rated $\mathrm{V}_{\mathrm{CES}}, \mathrm{V}_{\mathrm{EB}}=0$) $\left(\mathrm{V}_{\mathrm{CE}}=500 \mathrm{~V}, \mathrm{~V}_{\mathrm{EB}}=0\right)$ $\begin{aligned} & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \end{aligned}$	$I_{\text {CES }}$	-	-	$\begin{aligned} & 100 \\ & 500 \\ & 100 \end{aligned}$	$\mu \mathrm{Adc}$
Emitter Cutoff Current ($\left.\mathrm{V}_{\mathrm{EB}}=9.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{I}_{\text {EBO }}$	-	-	100	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

$\begin{array}{ll} \text { Base-Emitter Saturation Voltage } & \left(\mathrm{I}_{\mathrm{C}}=1.3 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.13 \mathrm{Adc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.6 \mathrm{Adc}\right) \end{array}$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$		$\begin{aligned} & 0.82 \\ & 0.93 \end{aligned}$	$\begin{gathered} 1.1 \\ 1.25 \end{gathered}$	Vdc
Collector-Emitter Saturation Voltage $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=1.3 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.13 \mathrm{Adc}\right) \\ & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B}}=0.6 \mathrm{Adc}\right) \\ & \quad\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \end{aligned}$	$\mathrm{V}_{\text {CE(sat) }}$	-	$\begin{aligned} & 0.22 \\ & 0.20 \\ & 0.30 \\ & 0.30 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 0.5 \\ & 0.7 \\ & 0.7 \end{aligned}$	Vdc
DC Current Gain $\begin{array}{ll} \hline\left(I_{C}=0.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=1.3 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right) & \left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right) \\ \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) & \\ \hline \end{array}$	$\mathrm{h}_{\text {FE }}$	14 - 12 12 8.0 7.0 10	$\begin{aligned} & 30 \\ & 20 \\ & 20 \\ & 13 \\ & 12 \\ & 20 \end{aligned}$	34 - - -	-

DYNAMIC CHARACTERISTICS

Current Gain Bandwidth ($\mathrm{l}_{\mathrm{C}}=0.5 \mathrm{Adc}, \mathrm{V}_{\text {CE }}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}$)				$\mathrm{f}_{\text {T }}$	-	14	-	MHz
Output Capacitance ($\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}$)				C_{OB}	-	95	150	pF
Input Capacitance ($\mathrm{V}_{\mathrm{EB}}=8.0 \mathrm{~V}$)				$\mathrm{C}_{\text {IB }}$	-	1000	1500	pF
Dynamic Saturation Voltage: Determined $1.0 \mu \mathrm{~s}$ and $3.0 \mu \mathrm{~s}$ respectively after rising $\mathrm{I}_{\mathrm{B} 1}$ reaches 90% of final $l_{B 1}$ (see Figure 18)	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=1.3 \mathrm{Adc}\right. \\ & \mathrm{I}_{\mathrm{B} 1}=300 \mathrm{mAdc} \\ & \left.\mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right) \end{aligned}$	$1.0 \mu \mathrm{~s}$	$\left(T_{C}=125^{\circ} \mathrm{C}\right)$	$\mathrm{V}_{\text {CE (dsat) }}$	-	$\begin{aligned} & 2.5 \\ & 6.5 \end{aligned}$		V
		$3.0 \mu \mathrm{~s}$	$\left(T_{C}=125^{\circ} \mathrm{C}\right)$		-	$\begin{aligned} & 0.6 \\ & 2.5 \end{aligned}$	-	
	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}\right. \\ & \mathrm{I}_{\mathrm{B} 1}=0.6 \mathrm{Adc} \\ & \left.\mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right) \end{aligned}$	$1.0 \mu \mathrm{~s}$	($\left.\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$		-	$\begin{aligned} & 3.0 \\ & 7.0 \end{aligned}$	-	
		$3.0 \mu \mathrm{~s}$	$\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$		-	$\begin{gathered} \hline 0.75 \\ 1.4 \end{gathered}$	-	

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted) (continued)

Characteristic			Symbol	Min	Typ	Max	Unit
SWITCHING CHARACTERISTICS: Resistive Load (D.C. $\leq 10 \%$, Pulse Width $=20 \mu \mathrm{~s}$)							
Turn-On Time	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=1.3 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.13 \mathrm{Adc}\right. \\ & \left.\mathrm{I}_{\mathrm{B} 2}=0.65 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right) \end{aligned}$	$\left(T_{C}=125^{\circ} \mathrm{C}\right)$	$\mathrm{t}_{\text {on }}$	-	$\begin{gathered} 100 \\ 90 \end{gathered}$	200 -	ns
Turn-Off Time		$\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$	$\mathrm{t}_{\text {off }}$	-	$\begin{aligned} & 1.35 \\ & 1.90 \end{aligned}$	2.5 -	$\mu \mathrm{s}$
Turn-On Time	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.6 \mathrm{Adc}\right. \\ & \left.\mathrm{I}_{\mathrm{B} 1}=1.5 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CC}}=300 \mathrm{~V}\right) \end{aligned}$	$\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$	$\mathrm{t}_{\text {on }}$	-	$\begin{gathered} 90 \\ 100 \end{gathered}$	150 -	ns
Turn-Off Time		$\left(\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$	$\mathrm{t}_{\text {off }}$	-	$\begin{aligned} & 1.7 \\ & 2.1 \end{aligned}$	2.5 -	$\mu \mathrm{s}$

SWITCHING CHARACTERISTICS: Inductive Load ($\mathrm{V}_{\text {clamp }}=300 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~L}=200 \mu \mathrm{H}$)

Fall Time	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=1.3 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.13 \mathrm{Adc}\right. \\ & \left.\mathrm{I}_{\mathrm{B} 2}=0.65 \mathrm{Adc}\right) \end{aligned}$	($\left.\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$	t_{fi}	-	$\begin{aligned} & 115 \\ & 120 \end{aligned}$	200	ns
Storage Time		$\left(T_{C}=125^{\circ} \mathrm{C}\right)$	$\mathrm{t}_{\text {si }}$	-	1.35 1.75	2.5 -	$\mu \mathrm{s}$
Crossover Time		($\left.\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$	t_{c}	-	$\begin{aligned} & 200 \\ & 210 \end{aligned}$	350 -	ns
Fall Time	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.6 \mathrm{Adc}\right. \\ & \left.\mathrm{I}_{\mathrm{B} 2}=1.5 \mathrm{Adc}\right) \end{aligned}$	($\left.\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}\right)$	tfi	-	$\begin{gathered} 85 \\ 100 \end{gathered}$	150 -	ns
Storage Time		$\left(T_{C}=125^{\circ} \mathrm{C}\right)$	t_{si}	-	$\begin{aligned} & 1.75 \\ & 2.25 \end{aligned}$	2.5	$\mu \mathrm{s}$
Crossover Time		($\left.T_{C}=125^{\circ} \mathrm{C}\right)$	t_{c}	-	$\begin{aligned} & 175 \\ & 200 \end{aligned}$	300 -	ns
Fall Time	$\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{Adc}, \mathrm{I}_{\mathrm{B} 1}=0.6 \mathrm{Adc}\right. \\ & \left.\mathrm{I}_{\mathrm{B} 2}=0.6 \mathrm{Adc}\right) \end{aligned}$	$\left(T_{C}=125^{\circ} \mathrm{C}\right)$	$t_{\text {fi }}$	80	$2 \overline{210}$	180	ns
Storage Time		$\left(T_{C}=125^{\circ} \mathrm{C}\right)$	t_{si}	2.6	- 4.	3.8	$\mu \mathrm{s}$
Crossover Time		($\mathrm{T}_{\mathrm{C}}=125^{\circ} \mathrm{C}$)	t_{c}	-	$\begin{aligned} & 230 \\ & 400 \end{aligned}$	350	ns

BUL146G, BUL146FG

TYPICAL STATIC CHARACTERISTICS

Figure 1. DC Current Gain @ 1 Volt

Figure 3. Collector Saturation Region

Figure 5. Base-Emitter Saturation Region

Figure 2. DC Current Gain @ 5 Volts

Figure 4. Collector-Emitter Saturation Voltage

Figure 6. Capacitance

BUL146G, BUL146FG

TYPICAL SWITCHING CHARACTERISTICS
($\mathrm{I}_{\mathrm{B} 2}=\mathrm{I}_{\mathrm{C}} / 2$ for all switching)

Figure 7. Resistive Switching, t_{on}

Figure 9. Inductive Storage Time, $\mathbf{t}_{\mathbf{s i}}$

Figure 11. Inductive Switching, t_{c} and t_{fi} $I_{C} / I_{B}=5$

Figure 8. Resistive Switching, $\mathrm{t}_{\text {off }}$

Figure 10. Inductive Storage Time, $\mathbf{t}_{\mathbf{s i}}\left(\mathrm{h}_{\mathrm{FE}}\right)$

Figure 12. Inductive Switching, t_{c} and t_{fi} $\mathrm{I}_{\mathrm{C}} / \mathrm{I}_{\mathrm{B}}=10$

BUL146G, BUL146FG

TYPICAL SWITCHING CHARACTERISTICS

($\mathrm{I}_{\mathrm{B} 2}=\mathrm{I}_{\mathrm{C}} / 2$ for all switching $)$

Figure 13. Inductive Fall Time

Figure 14. Inductive Cross-Over Time

GUARANTEED SAFE OPERATING AREA INFORMATION

Figure 15. Forward Bias Safe Operating Area

Figure 17. Forward Bias Power Derating

Figure 16. Reverse Bias Switching Safe Operating Area
There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $\mathrm{I}_{\mathrm{C}}-\mathrm{V}_{\mathrm{CE}}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 15 is based on $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} ; \mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $\mathrm{T}_{\mathrm{C}}>25^{\circ} \mathrm{C}$. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown in Figure 15 may be found at any case temperature by using the appropriate curve on Figure 17. $\mathrm{T}_{\mathrm{J}(\mathrm{pk})}$ may be calculated from the data in Figure 20. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn-off with the base-to-emitter junction reverse-biased. The safe level is specified as a reversebiased safe operating area (Figure 16). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

BUL146G, BUL146FG

Figure 18. Dynamic Saturation Voltage Measurements

Figure 19. Inductive Switching Measurements

Table 1. Inductive Load Switching Drive Circuit

BUL146G, BUL146FG

TYPICAL THERMAL RESPONSE

Figure 20. Typical Thermal Response ($\mathrm{Z}_{\theta \mathrm{JC}}(\mathrm{t})$) for BUL146

Figure 21. Typical Thermal Response for BUL146F

ORDERING INFORMATION

Device	Package	Shipping
BUL146G	TO-220AB (Pb-Free)	50 Units / Rail
BUL146FG	TO-220 (Fullpack) (Pb-Free)	50 Units / Rail

BUL146G, BUL146FG

TEST CONDITIONS FOR ISOLATION TESTS*

Figure 22a. Screw or Clip Mounting Position for Isolation Test Number 1
*Measurement made between leads and heatsink with all leads shorted together

MOUNTING INFORMATION**

Figure 23a. Screw-Mounted

Figure 23b. Clip-Mounted

Figure 23. Typical Mounting Techniques

for Isolated Package

Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a screw torque of 6 to $8 \mathrm{in} \cdot \mathrm{lbs}$ is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain a constant pressure on the package over time and during large temperature excursions.

Destructive laboratory tests show that using a hex head 4-40 screw, without washers, and applying a torque in excess of $20 \mathrm{in} \cdot \mathrm{lbs}$ will cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.

Additional tests on slotted 4-40 screws indicate that the screw slot fails between 15 to 20 in • Ibs without adversely affecting the package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recommend exceeding $10 \mathrm{in} \cdot \mathrm{lbs}$ of mounting torque under any mounting conditions.

[^1]
BUL146G, BUL146FG

PACKAGE DIMENSIONS

TO-220AB
CASE 221A-09
ISSUE AF

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH. BODY AND LEAD IRREGULARITIES ARE BODY AND

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.570	0.620	14.48	15.75
B	0.380	0.405	9.66	10.28
C	0.160	0.190	4.07	4.82
D	0.025	0.035	0.64	0.88
F	0.142	0.161	3.61	4.09
G	0.095	0.105	2.42	2.66
H	0.110	0.155	2.80	3.93
J	0.014	0.025	0.36	0.64
K	0.500	0.562	12.70	14.27
L	0.045	0.060	1.15	1.52
N	0.190	0.210	4.83	5.33
Q	0.100	0.120	2.54	3.04
R	0.080	0.110	2.04	2.79
S	0.045	0.055	1.15	1.39
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045	---	1.15	---
Z	---	0.080	---	2.04

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER
4. COLLECTOR

TO-220 FULLPAK
CASE 221D-03
ISSUE G

NOTES:
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. 221D-01 THRU 221D-02 OBSOLETE, NEW STANDARD 221D-03

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.625	0.635	15.88	16.12
B	0.408	0.418	10.37	10.63
C	0.180	0.190	4.57	4.83
D	0.026	0.031	0.65	0.78
F	0.116	0.119	2.95	3.02
G	0.100	$0.15 C$	2.54 BSC	
H	0.125	0.135	3.18	
J	0.018	0.025	0.45	0.63
K	0.530	0.540	13.47	13.73
L	0.048	0.053	1.23	1.36
N	0.200 BSC	5.08 BSC		
Q	0.124	0.128		
R	0.099	0.103	2.15	3.25
S	0.101	0.113	2.51	2.62
U	0.238	0.258	6.06	6.56

STYLE 2:
PIN 1. BASE
2. COLLECTOR
3. EMITTER

ON Semiconductor and (ON) are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

[^1]: ** For more information about mounting power semiconductors see Application Note AN1040.

