: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HIGH CURRENT NPN SILICON TRANSISTOR

- STMicroelectronics PREFERRED SALESTYPE
- NPN TRANSISTOR

DESCRIPTION

The BUR51 is a silicon Multiepitaxial Planar NPN transistor in modified Jedec TO-3 metal case, intented for use in switching and linear applications in military and industrial equipment.

N:TER:NAL SCHEMATIC DIAGRAM

ABSO'_:ITE MAXIMUM RATINGS

$\mathbf{O}^{\prime} \mathbf{m}^{\prime}, \mathbf{o l}$	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CBO}}$	Collector-Base Voltage $\left(\mathrm{I}_{\mathrm{E}}=0\right)$	300	V
$\mathrm{~V}_{\mathrm{CEO}}$	Collector-Emitter Voltage $\left(\mathrm{I}_{\mathrm{B}}=0\right)$	200	V
$\mathrm{~V}_{\mathrm{EBO}}$	Emitter-Base Voltage $\left(\mathrm{I}_{\mathrm{C}}=0\right)$	10	V
I_{C}	Collector Current	60	A
I_{CM}	Collector Peak Current $\left(\mathrm{t}_{\mathrm{p}}=10 \mathrm{~ms}\right)$	80	A
I_{B}	Base Current	16	A
$\mathrm{P}_{\text {tot }}$	Total Dissipation at $\mathrm{T}_{\mathrm{C}} \leq 25^{\circ} \mathrm{C}$	350	W
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to 200	${ }^{\circ} \mathrm{C}$
T_{j}	Max. Operating Junction Temperature	200	${ }^{\circ} \mathrm{C}$

BUR51

THERMAL DATA

$R_{\text {thj-case }}$	Thermal Resistance Junction-case	Max	0.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\text {case }}=25^{\circ} \mathrm{C}$ unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
Iсbo	Collector Cut-off Current ($\mathrm{I}=0$)	$\begin{aligned} & \mathrm{V}_{C B}=300 \mathrm{~V} \\ & \mathrm{~V}_{C B}=300 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{c}}=125{ }^{\circ} \mathrm{C}$			$\begin{gathered} 0.2 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$
Iceo	Collector Cut-off Current ($\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\text {CE }}=200 \mathrm{~V}$				1	mA
$I_{\text {ebo }}$	Emitter Cut-off Current $\left(\mathrm{IC}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{\mathrm{EB}}=7 \mathrm{~V}$				0.2	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CEO }}$ (sus)*	Collector-Emitter Sustaining Voltage $\left(\mathrm{IB}_{\mathrm{B}}=0\right)$	$\mathrm{Ic}=200 \mathrm{~mA}$		200			V
$V_{\text {Ebo }}$	Emitter-base Voltage ($\mathrm{IC}=0$)	$\mathrm{I}_{\mathrm{E}}=10 \mathrm{~mA}$		10			
$\mathrm{V}_{\text {CE(sat) }}{ }^{*}$	Collector-emitter Saturation Voltage	$\begin{aligned} & \mathrm{IC}=30 \mathrm{~A} \\ & \mathrm{IC}=50 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=5 \mathrm{~A} \end{aligned}$		0.9	$\begin{gathered} 1 \\ 1.5 \end{gathered}$	
$\mathrm{V}_{\mathrm{BE}(\text { sat) }}$ *	Base-emitter Saturation Voltage	$\begin{aligned} & \mathrm{I} \mathrm{I}=30 \mathrm{~A} \\ & \mathrm{I}=50 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B}}=2 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B}}=5 \mathrm{~A} \end{aligned}$		1.55	$\begin{gathered} 1.8 \\ 2 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$
hfE^{*}	DC Current Gain	$\begin{aligned} & \mathrm{IC}=5 \mathrm{~A} \\ & \mathrm{IC}=50 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CE}}=4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CE}}=4 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 20 \\ & 15 \end{aligned}$,	100	
$I_{\text {s/b }}$	Second Breakdown Collector Current	$\mathrm{V}_{\text {CE }}=20 \mathrm{~V}$	$t=1 \mathrm{~s}$	17.5			A
f_{T}	Transition-Frequency	$\begin{aligned} & \mathrm{IC}=1 \mathrm{~A} \\ & \mathrm{f}=1 \mathrm{MHz} \end{aligned}$	$V_{C E}=5 \mathrm{~V}$	10	16		MHz
$\mathrm{t}_{\text {on }}$	Turn-on Time	$\begin{aligned} & \hline \mathrm{IC}=50 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=100 \mathrm{~V} \\ & \hline \end{aligned}$	$\mathrm{I}_{\mathrm{B} 1}=5 \mathrm{~A}$		0.35	1	$\mu \mathrm{s}$
$\begin{aligned} & \mathrm{t}_{\mathrm{s}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$	Storage Time Fall Time	$\begin{aligned} & \mathrm{I}_{\mathrm{C}}=50 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{B} 2}=-5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{\mathrm{B} 1}=5 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{CC}}=100 \mathrm{~V} \end{aligned}$		$\begin{gathered} 0.9 \\ 0.24 \end{gathered}$	$\begin{gathered} 2 \\ 0.6 \end{gathered}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$
	Clamped $\mathrm{E}_{\mathrm{s} / \mathrm{b}}$ Collector Current	$V_{\text {clamp }}=200 \mathrm{~V}$	$\mathrm{L}=500 \mu \mathrm{H}$	50			A

* Pulsed: Pulse duration $=300 \mu \mathrm{~s}$, duty cycle 1.5%

TO-3 (I) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A	11	11.7	13.1	0.433	0.461	0.516
B	1.45	1.5	1.6	0.057	0.059	0.063
C	2.7		2.92	0.106		0.115
D	8.9		9.4	0.350		0.370
E	19		20	0.748		0.787
G	10.7	10.9	11.1	0.421	0.429	0.437
N	16.5	16.9	17.2	0.650	0.665	0.677
P	25		26	0.984		1.024
R	3.88		4.2	0.153		0.165
U	38.5		39.3	1.51		1.547
V	30	30.14	30.3	. 181	1.187	1.193

P003I

BUR51

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a trademark of STMicroelectronics
© 2003 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States.
http://www.st.com

