

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

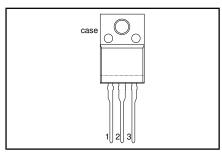
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

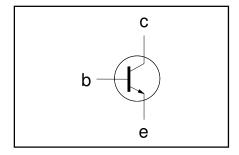
BUT11APX-1200

GENERAL DESCRIPTION

Enhanced performance new generation, high voltage, high-speed switching npn transistor in a plastic full-pack envelope intended for use in horizontal deflection circuits of colour television receivers. Features exceptional tolerance to base drive and collector current load variations resulting in a very low worst case dissipation.


QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
V _{CESM}	Collector-emitter voltage peak value	$V_{BE} = 0 \text{ V}$	-	1200	V
V_{CBO}	Collector-Base voltage (open emitter)		-	1200	V
V _{CEO}	Collector-emitter voltage (open base)		-	550	V
I _C	Collector current (DC)		-	6	Α
1 1	Collector current peak value		-	10	Α
P _{tot}	Total power dissipation	$T_{hs} \le 25 ^{\circ}C$	-	32	W
V _{CEsat}	Collector-emitter saturation voltage	$I_{\rm C} = 2 \text{ A}; I_{\rm B} = 0.4 \text{ A}$	0.15	1.0	V
h _{FEsat}	DC current gain	$I_{c} = 3 \text{ A}; V_{ce} = 5 \text{ V}$	15.5	-	
t _f	Fall time	$I_{C} = 3 \text{ A}; V_{CE} = 5 \text{ V}$ $I_{C} = 2.5 \text{ A}; I_{B1} = 0.5 \text{ A}$	170	300	ns


PINNING - SOT186A

PIN	DESCRIPTION	
1	base	
2	collector	
3	emitter	
case	isolated	

PIN CONFIGURATION

SYMBOL

LIMITING VALUES

Limiting values in accordance with the Absolute Maximum Rating System (IEC 134)

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CESM}	Collector to emitter voltage	$V_{BE} = 0 V$	-	1200	V
V _{CEO}	Collector to emitter voltage (open base)		-	550	V
V_{CBO}	Collector to base voltage (open emitter)		-	1200	V
l I _C	Collector current (DC)		-	6	Α
I _{CM}	Collector current peak value		-	10	Α
I _B	Base current (DC)		-	3	Α
I I _{BM}	Base current peak value		-	5	Α
P _{tot}	Total power dissipation	T _{hs} ≤ 25 °C	-	32	W
T _{stq}	Storage temperature	113	-65	150	°C
T _j	Junction temperature		-	150	°С

THERMAL RESISTANCES

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
R _{th j-hs}	Junction to heatsink	with heatsink compound	-	3.95	K/W
R _{th i-a}	Junction to ambient	in free air	55	-	K/W

BUT11APX-1200

ISOLATION LIMITING VALUE & CHARACTERISTIC

 T_{hs} = 25 °C unless otherwise specified

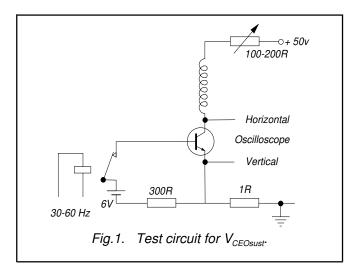
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{isol}	R.M.S. isolation voltage from all three terminals to external heatsink	f = 50-60 Hz; sinusoidal waveform; R.H. ≤ 65% ; clean and dustfree	ı	ı	2500	>
C _{isol}	Capacitance from T2 to external heatsink	f = 1 MHz	-	10	-	рF

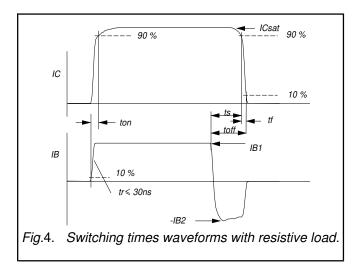
STATIC CHARACTERISTICS

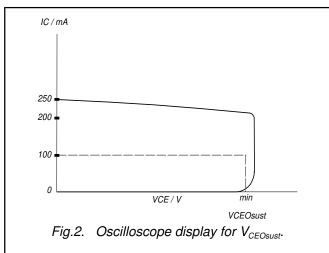
 T_{hs} = 25 $^{\circ}$ C unless otherwise specified

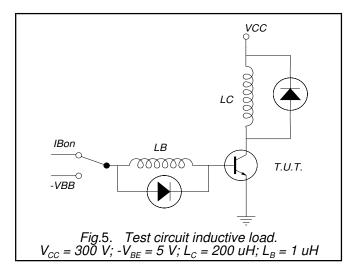
SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
I _{CES}	Collector cut-off current 1	$V_{BE} = 0 \text{ V}; V_{CE} = V_{CESMmax}$	-	-	1.0	mA
I _{CES}		$V_{BE} = 0 \text{ V}; V_{CE} = V_{CESMmax}, V_{BE} = 0 \text{ V}; V_{CE} = V_{CESMmax};$	-	-	2.0	mA
I _{EBO}	Emitter cut-off current	$T_{j} = 125 ^{\circ}\text{C}$ $V_{FB} = 7 ^{\circ}\text{V}; I_{C} = 0 ^{\circ}\text{A}$	_	_	0.1	mA
V _{CEOsust}	Collector-emitter sustaining voltage	$I_{B} = 0 \text{ A}; I_{C} = 10 \text{ mA};$	550	-	-	v `
V _{CEsat}	Collector-emitter saturation voltage	$I_{C} = 25 \text{ mH}$ $I_{C} = 2.0 \text{ A}; I_{B} = 0.4 \text{ A}$	_	0.15	1.0	V
V _{BEsat}	Base-emitter saturation voltage	$I_{\rm C} = 2.0 \text{ A}; I_{\rm R} = 0.4 \text{ A}$	-	0.91	1.5	V
h _{FE}	DC current gain	$ I_C = 1 \text{ mA}; V_{CE} = 5 \text{ V}$	13	25	-	
h _{FE}		$I_{C} = 500 \text{ mA}; V_{CE} = 5 \text{ V}$	20	30	47	
h _{FEsat}	DC current gain	$I_{C} = 2 \text{ A}; V_{CE} = 5 \text{ V}$ $I_{C} = 3.0 \text{ A}; V_{CE} = 5 \text{ V}$	13	18.5	25	
h _{FEsat}		$I_{\rm C} = 3.0 \text{ A}; V_{\rm CE} = 5 \text{ V}$	-	15.5	-	

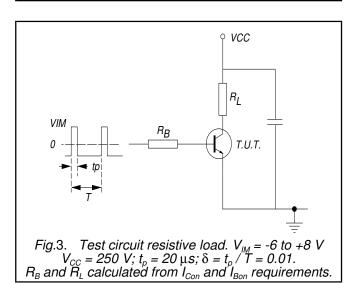
DYNAMIC CHARACTERISTICS

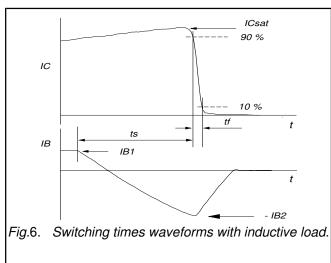

T_{hs} = 25 °C unless otherwise specified8

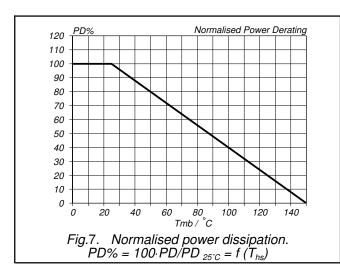

SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	UNIT
	Switching times (resistive load)	$I_{Con} = 2.5 \text{ A}; I_{Bon} = -I_{Boff} = 0.5 \text{ A}; R_{L} = 75 \text{ ohms}; V_{BB2} = 4 \text{ V};$			
t _{on}	Turn-on time	. 552	-	0.5	μs
l t _s	Turn-off storage time		-	3	μs
L _f	Turn-off fall time		-	0.3	μs
	Switching times (inductive load)	$I_{Csat} = 2.5 \text{ A}; I_{B1} = 0.5 \text{ A}; L_{B} = 1 \mu\text{H}; $ - $V_{PR} = 5 \text{ V}$			
t _s	Turn-off storage time		-	1.5	μs
t _f	Turn-off fall time		170	300	ns
	Switching times (inductive load)	$I_{Csat} = 2.5 \text{ A}; I_{B1} = 0.5 \text{ A}; L_{B} = 1 \mu\text{H}; \\ -V_{BB} = 5 \text{ V}; T_{i} = 100 ^{\circ}\text{C}$			
l t _s	Turn-off storage time	, , , -	-	1.8	μs
t _f	Turn-off fall time		-	300	ns

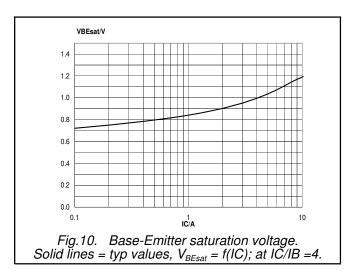

April 1999 2 Rev 1.000

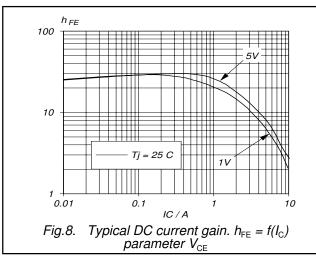

¹ Measured with half sine-wave voltage (curve tracer).

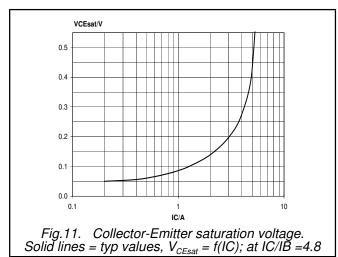

BUT11APX-1200



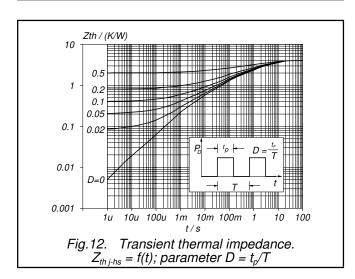









BUT11APX-1200



BUT11APX-1200

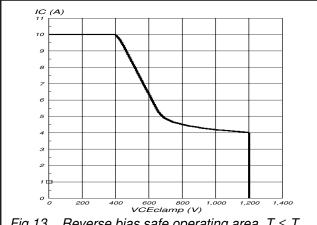


Fig.13. Reverse bias safe operating area. $T_j \le T_{j \max}$

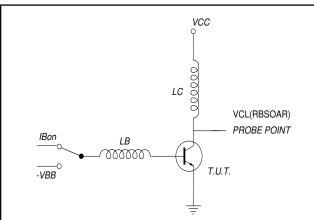
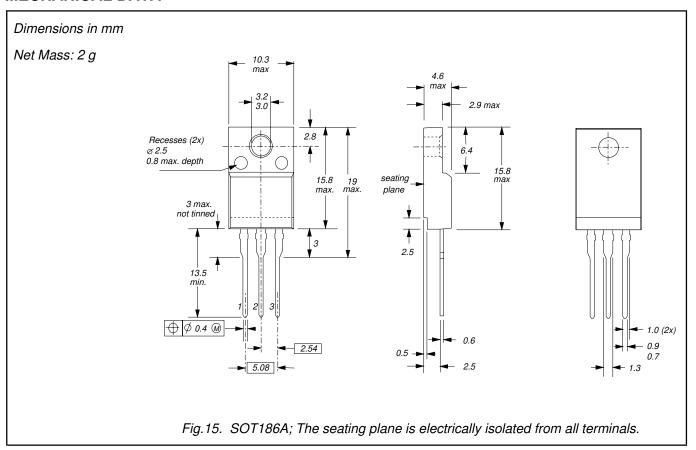



Fig.14. Test circuit for reverse bias safe operating area. $V_{cl} \leq 1200V; \ V_{cc} = 150V; \ V_{BB} = -5V; \ L_B = 1\mu H; L_c = 200\mu H$

BUT11APX-1200

MECHANICAL DATA

- Notes
 1. Refer to mounting instructions for F-pack envelopes.
 2. Epoxy meets UL94 V0 at 1/8".

Philips Semiconductors Product specification

Silicon Diffused Power Transistor

BUT11APX-1200

DEFINITIONS

Data sheet status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
1 Todast opcomoation	This data direct contains man product openinguione.				

Limiting values

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 2001

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

April 1999 7 Rev 1.000