

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

BUT12AX

Silicon diffused power transistor

Rev. 01 — 16 June 2004

Product data

1. Product profile

1.1 Description

High voltage, high speed, NPN power transistor in a plastic package.

1.2 Features

Isolated package

Fast switching.

1.3 Applications

- Inverters
- Motor control systems
- Switching regulators
- DC-to-DC converters.

1.4 Quick reference data

- V_{CESM} ≤ 1000 V
- $P_{tot} \le 23 \text{ W}$

- $I_C \le 8 A$
- $t_f \le 0.8 \ \mu s.$

2. Pinning information

Table 1: Pinning - SOT186A (TO-220F), simplified outline and symbol

Pin	Description	Simplified outline	Symbol	
1	base (b)			
2	collector (c)	mb		2 J
3	emitter (e)	000		1 —
mb	mounting base; isolated			мввоов 3
		1 2 3 MBK110		
		SOT186A (TO-220F	·)	

3. Ordering information

Table 2: Ordering information

Type number	Package		
	Name	Description	Version
BUT12AX	TO-220F	Plastic single-ended package; isolated heatsink mounted; 1 mounting hole; 3 leads.	SOT186A

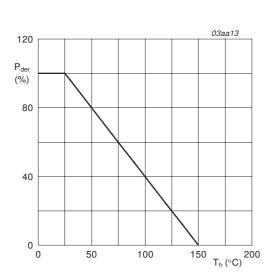
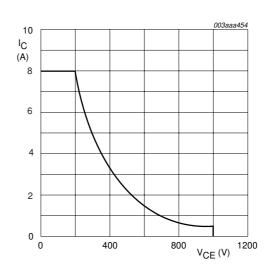

4. Limiting values

Table 3: Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).


Symbol	Parameter	Conditions	Min	Max	Unit
V_{CESM}	peak collector-emitter voltage	V _{BE} = 0 V	-	1000	V
V_{CEO}	collector-emitter voltage	base open circuit	-	450	V
I _C	collector current	Figure 2 and 3	-	8	Α
I _{Csat}	collector saturation current		-	5	Α
I _{CM}	peak collector current	Figure 3	-	20	Α
I_{B}	base current (DC)		-	4	Α
I _{BM}	peak base current		-	6	Α
P _{tot}	total power dissipation	T _h = 25 °C; Figure 1	[1] _	23	W
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	+150	°C

^[1] Mounted without heatsink compound.

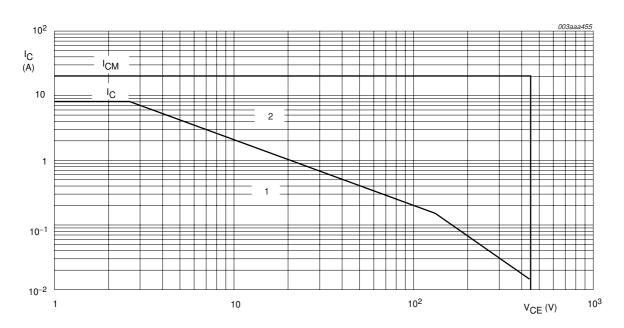

$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$

Fig 1. Normalized total power dissipation as a function of heatsink temperature.

 $V_{BE} = -1 \text{ V to } -5 \text{ V}; T_h = 100 \,^{\circ}\text{C}.$

Fig 2. Reverse bias safe operating area; continuous collector current as a function of collector-emitter voltage.

T_h = 25 °C

- 1 Region of permissible DC operation.
- 2 Permissible extension for repetitive operation.

Fig 3. Forward bias safe operating area; continuous and peak collector currents as a function of collector-emitter voltage.

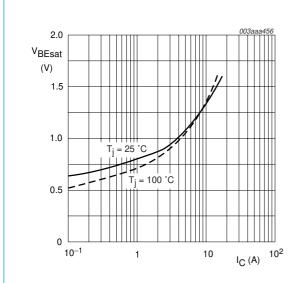
5. Thermal characteristics

Table 4: Thermal characteristics

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
$R_{th(j-h)}$	thermal resistance from junction to heatsink	Mounted without heatsink compound	[1]	-	-	5.5	K/W
		Mounted with heatsink compound	[1]	-	-	3.9	K/W
R _{th(j-a)}	thermal resistance from junction to ambient			-	55	-	K/W

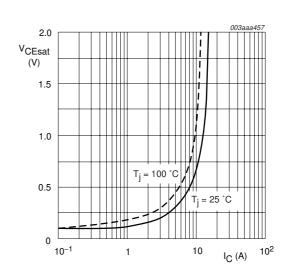
^[1] External heatsink connected to mounting base.

6. Characteristics


Table 5: Characteristics

 $T_i = 25 \,^{\circ}C$ unless otherwise specified.

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
Static ch	naracteristics						
V _{CEOsus}	collector-emitter sustaining voltage	$I_C = 100 \text{ mA}$; $I_{Boff} = 0 \text{ A}$; $L = 25 \text{ mH}$; Figure 9 and 10		400	-	-	V
V _{CEsat}	collector-emitter saturation voltage	I _C = 5 A; I _B = 1 A; Figure 5		-	-	1.5	V
V _{BEsat}	base-emitter saturation voltage	I _C = 5 A; I _B = 1 A; Figure 4		-	-	1.5	V
I _{CES}	collector-emitter cut-off current	$V_{CE} = V_{CESM}; V_{BE} = 0 V$					
		T _j = 25 °C	[1]	-	-	1	mΑ
		T _j = 125 °C	[1]	-	-	3	mΑ
h _{FE}	DC current gain	V _{CE} = 5 V; Figure 8					
		I _C = 10 mA		10	18	35	
		I _C = 1 A		10	20	35	
Dynamic	c characteristics						
t _{on}	turn-on time	I _{Con} = 5 A; I _{Bon} = I _{Boff} = 1 A; resistive load; Figure 11 and 12		-	-	1	μs
t _s	carrier storage time	I _{Con} = 5 A; I _{Bon} = I _{Boff} = 1 A; resistive load; Figure 11 and 12	[2]	-	-	4	μs
		I_{Con} = 5 A; I_{Bon} = 1 A; V_{CL} = 250 V; T_{mb} = 100 °C; inductive load; Figure 13 and 14		-	1.9	2.5	μs
t _f	fall time	I _{Con} = 5 A; I _{Bon} = I _{Boff} = 1 A; resistive load; Figure 11 and 12		-	-	0.8	μs
		$I_{Con} = 5$ A; $I_{Bon} = 1$ A; $V_{CL} = 300$ V; $T_{mb} = 100$ °C; inductive load; Figure 13 and 14		-	200	300	ns


^[1] Measured with a half-sinewave voltage.

^[2] turn-off storage time

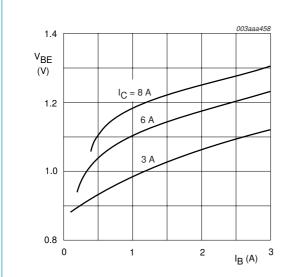

 T_j = 25 °C and 100 °C

Fig 4. Base-emitter saturation voltage as a function of collector current; typical values.

 $T_i = 25 \,^{\circ}\text{C}$ and $100 \,^{\circ}\text{C}$

Fig 5. Collector-emitter saturation voltage as a function of collector current; typical values.

T_i = 25 °C

Fig 6. Base-emitter voltage as a function of base current; typical values.

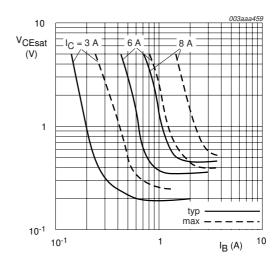
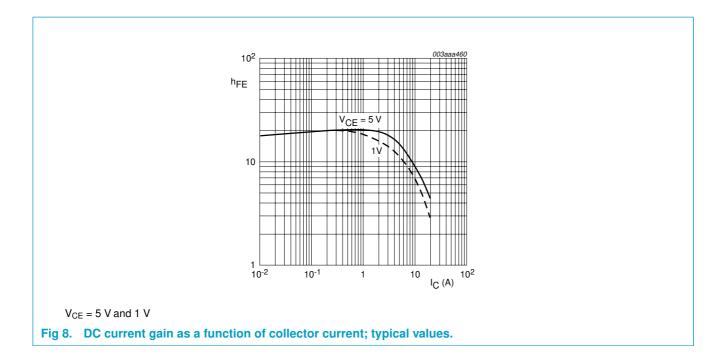
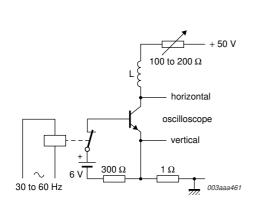




Fig 7. Collector-emitter saturation voltage as a function base current; typical and maximum values.

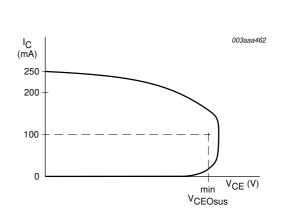
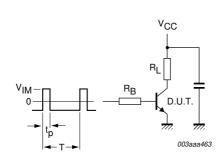



Fig 9. Test circuit for collector-emitter sustaining voltage.

Fig 10. Oscilloscope display for collector-emitter sustaining voltage.

 V_{CC} = 250 V; t_p = 20 $\mu s;~V_{IM}$ = -6 V to 8 V; t_p/T = 0.01. The values of R_B and R_L are selected in accordance with I_{Con} and I_{Bon} requirements.

Fig 11. Test circuit for resistive load switching times

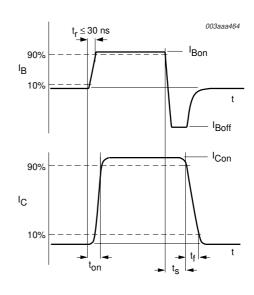
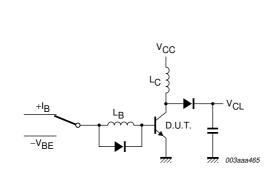



Fig 12. Switching time waveforms with resistive load.

 $V_{CL} \leq$ 1000 V; V_{CC} = 30 V; V_{BE} = -1 V to -5 V; L_B = 1 μH ; L_C = 200 μH

Fig 13. Test circuit for inductive load switching and reverse bias safe operating area.

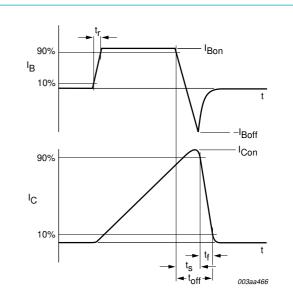
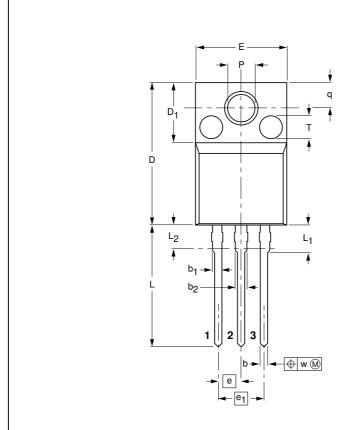
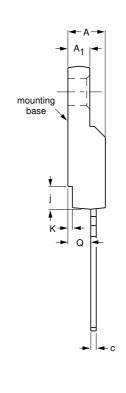


Fig 14. Switching time waveforms with inductive load.

7. Isolation characteristics


Table 6: Isolation characteristics


Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
$V_{\text{isol}(\text{RMS})M}$	Peak RMS isolation voltage from all three terminals to external heatsink.	$f = 50$ to 60 Hz; sinusoidal waveform; RH \leq 65%; clean and dust-free.	-	-	2500	V
C _{c-h}	Capacitance from collector to external heatsink.		-	12	-	pF

8. Package outline

Plastic single-ended package; isolated heatsink mounted; 1 mounting hole; 3 lead TO-220 'full pack'

SOT186A

0 5 10 mm Luuruuduu scale

DIMENSIONS (mm are the original dimensions)

UNIT	Α	A ₁	b	b ₁	b ₂	С	D	D ₁	E	е	e ₁	j	К	L	L ₁	L ₂ ⁽¹⁾ max.	Р	Q	q	T ⁽²⁾	w
mm	4.6 4.0	2.9 2.5	0.9 0.7	1.1 0.9	1.4 1.0	0.7 0.4	15.8 15.2	6.5 6.3	10.3 9.7	2.54	5.08	2.7 1.7	0.6 0.4	14.4 13.5	3.30 2.79	3	3.2 3.0	2.6 2.3	3.0 2.6	2.5	0.4

Notes

- 1. Terminal dimensions within this zone are uncontrolled. Terminals in this zone are not tinned.
- 2. Both recesses are \varnothing 2.5 \times 0.8 max. depth

OUTLINE		REFER	ENCES	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT186A		3-lead TO-220F			-02-03-12- 02-04-09	

Fig 15. SOT186A (TO-220F).

9397 750 13442

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

9. Revision history

Table 7: Revision history

Rev	Date	CPCN	Description
01	20040616	-	Product data (9397 750 13442)

10. Data sheet status

Level	Data sheet status ^[1]	Product status ^{[2][3]}	Definition
I	Objective data	Development	This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice.
II	Preliminary data	Qualification	This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product.
III	Product data	Production	This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN).

- [1] Please consult the most recently issued data sheet before initiating or completing a design.
- [2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
- [3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

11. Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

12. Disclaimers

Life support — These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Contact information

For additional information, please visit http://www.semiconductors.philips.com. For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.

9397 750 13442

© Koninklijke Philips Electronics N.V. 2004. All rights reserved.

Fax: +31 40 27 24825

Contents

1	Product profile
1.1	Description
1.2	Features
1.3	Applications 1
1.4	Quick reference data
2	Pinning information 1
3	Ordering information
4	Limiting values
5	Thermal characteristics 4
6	Characteristics 4
7	Isolation characteristics 8
8	Package outline 9
9	Revision history
10	Data sheet status
11	Definitions 11
12	Disclaimers

© Koninklijke Philips Electronics N.V. 2004. Printed in The Netherlands

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

Date of release: 16 June 2004 Document order number: 9397 750 13442

