imall

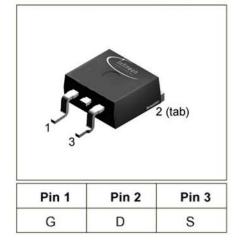
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



SIPMOS [®] Power Transistor

- N channel
- Enhancement mode
- Avalanche-rated
- . Pb-free lead plating; RoHS compliant

BUZ 32 L3045A BUZ 32 SMD

Туре	VDS	I _D	R _{DS(on)}	Package	'Pb-free	
BUZ 32 SMD	200 V	9.5 A	0.4 Ω	D ² PAK	Yes	

Maximum Ratings

Parameter	Symbol	Values	Unit
Continuous drain current	1 _D		А
$T_{\rm C} = 29 ^{\circ}{\rm C}$		9.5	
Pulsed drain current	1 _{Dpuls}		
$T_{\rm C} = 25 ^{\circ}{\rm C}$		38	
Avalanche current, limited by T_{jmax}	I _{AR}	9.5	
Avalanche energy,periodic limited by T _{jmax}	EAR	6.5	
Avalanche energy, single pulse	EAS		
$I_{\rm D}$ = 9.5 A, $V_{\rm DD}$ = 50 V, $R_{\rm GS}$ = 25 Ω			
$L = 2 \text{ mH}, T_{j} = 25 \degree \text{C}$		120	
Gate source voltage	V _{GS}	± 20	V
Power dissipation	Ptot		W
$T_{\rm C} = 25 ^{\circ}{\rm C}$		75	
Operating temperature	Tj	-55 + 150	°C
Storage temperature	T _{stg}	-55 + 150	
Thermal resistance, chip case	RthJC	<u>≤ 1.67</u>	K/W
Thermal resistance, chip to ambient	R _{thJA}	75	
DIN humidity category, DIN 40 040		E	
IEC climatic category, DIN IEC 68-1		55 / 150 / 56	

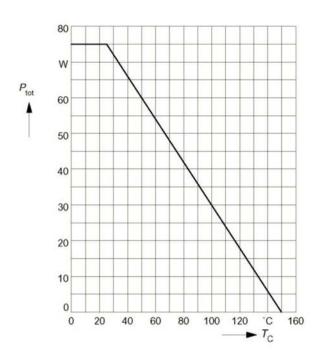
Electrical Characteristics, at $T_j = 25^{\circ}C$, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	

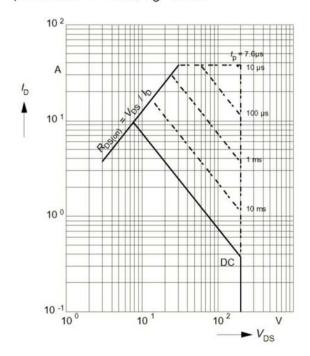
Drain- source breakdown voltage	V(BR)DSS				V
$V_{\rm GS}$ = 0 V, $I_{\rm D}$ = 0.25 mA, $T_{\rm j}$ = 25 °C	1.2	200	-		
Gate threshold voltage	V _{GS(th)}				
$V_{\rm GS} = V_{\rm DS}, I_{\rm D} = 1 \rm mA$		2.1	3	4	
Zero gate voltage drain current	I _{DSS}				μA
$V_{\rm DS}$ = 200 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 25 °C		-	0.1	1	
$V_{\rm DS}$ = 200 V, $V_{\rm GS}$ = 0 V, $T_{\rm j}$ = 125 °C		-	10	100	
Gate-source leakage current	IGSS				nA
$V_{\rm GS} = 20 \text{ V}, V_{\rm DS} = 0 \text{ V}$			10	100	
Drain-Source on-resistance	R _{DS(on)}				Ω
$V_{\rm GS} = 10 \text{ V}, I_{\rm D} = 6 \text{ A}$		-	0.3	0.4	

Electrical Characteristics, at T_j = 25°C, unless otherwise specified

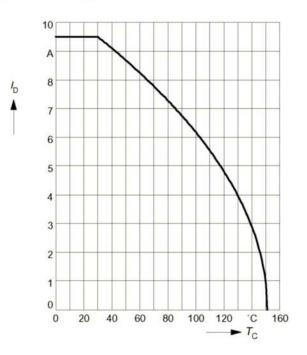
Parameter	Symbol		Values		Unit
		min.	typ.	max.	
Dynamic Characteristics					
Transconductance	9 _{fs}				S
$V_{\text{DS}} \ge 2 * I_{\text{D}} * R_{\text{DS(on)max}}$, $I_{\text{D}} = 6 \text{ A}$		3	4.6	-	
Input capacitance	Ciss				pF
$V_{GS} = 0 V, V_{DS} = 25 V, f = 1 MHz$		-	400	530	
Output capacitance	Coss				
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$			85	130	
Reverse transfer capacitance	Crss				
$V_{GS} = 0 \text{ V}, V_{DS} = 25 \text{ V}, f = 1 \text{ MHz}$		-	45	70	
Turn-on delay time	t _{d(on)}				ns
V_{DD} = 30 V, V_{GS} = 10 V, I_{D} = 3 A	Care Constants				
$R_{\rm GS} = 50 \ \Omega$		-	10	15	
Rise time	t _r				
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 3 A					
$R_{GS} = 50 \ \Omega$		-	40	60	
Turn-off delay time	td(off)				
$V_{\rm DD}$ = 30 V, $V_{\rm GS}$ = 10 V, $I_{\rm D}$ = 3 A					
$R_{\rm GS} = 50 \ \Omega$		-	55	75	
Fall time	t _f				
V_{DD} = 30 V, V_{GS} = 10 V, I_{D} = 3 A					
$R_{\rm GS} = 50 \ \Omega$			30	40	


Electrical Characteristics, at T_j = 25°C, unless otherwise specified

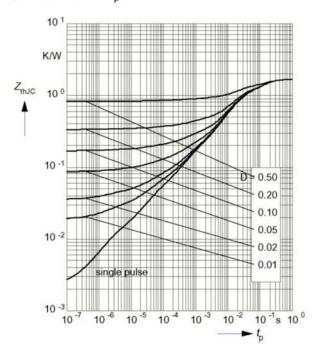
Parameter	Symbol	Values			Unit
		min.	typ.	max.	
Reverse Diode					
Inverse diode continuous forward current	Is				A
$T_{\rm C} = 25 ^{\circ}{\rm C}$			-	9.5	
Inverse diode direct current, pulsed	I _{SM}				
$T_{\rm C} = 25 ^{\circ}{\rm C}$		-	7	38	
Inverse diode forward voltage	V _{SD}				V
<i>V</i> _{GS} = 0 V, <i>I</i> _F = 19 A			1.4	1.7	
Reverse recovery time	trr				ns
$V_{\rm R} = 100 \text{ V}, I_{\rm F} = I_{\rm S}, di_{\rm F}/dt = 100 \text{ A/}\mu\text{s}$		-	200	-	
Reverse recovery charge	Q _{rr}				μC
$V_{\rm R} = 100 \text{ V}, I_{\rm F} = I_{\rm S}, di_{\rm F}/dt = 100 \text{ A}/\mu \text{s}$			0.6	-	


Power dissipation

 $P_{\rm tot} = f(T_{\rm C})$


Safe operating area

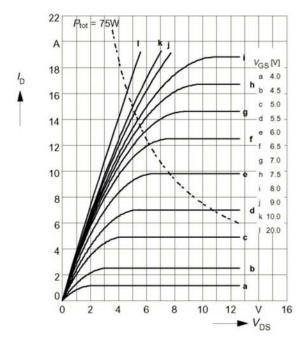
 $I_{\rm D} = f(V_{\rm DS})$ parameter: D = 0.01, $T_{\rm C} = 25^{\circ}{\rm C}$

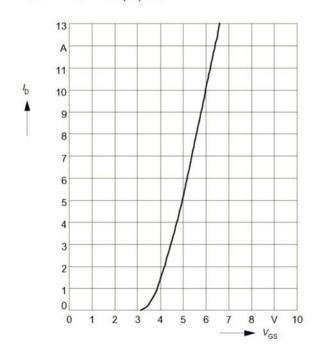

Drain current

 $I_{\rm D} = f(T_{\rm C})$ parameter: $V_{\rm GS} \ge 10$ V

Transient thermal impedance

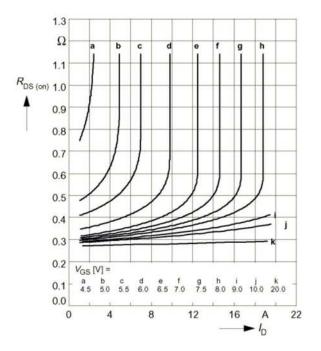
 $Z_{\text{th JC}} = f(t_{\text{p}})$ parameter: $D = t_{\text{p}} / T$

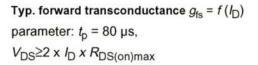


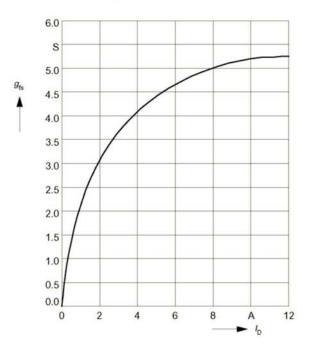

BUZ 32 L3045A BUZ 32 SMD

Typ. output characteristics

 $I_{\rm D} = f(V_{\rm DS})$ parameter: $t_{\rm p} = 80 \ \mu s$

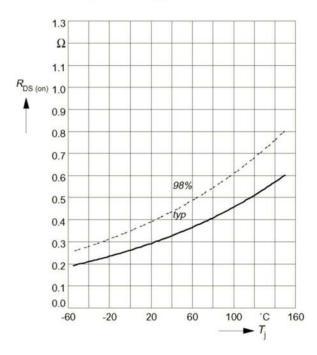



Typ. transfer characteristics $I_D = f(V_{GS})$ parameter: $t_p = 80 \ \mu s$ $V_{DS} \ge 2 \ x \ I_D \ x \ R_{DS(on)max}$

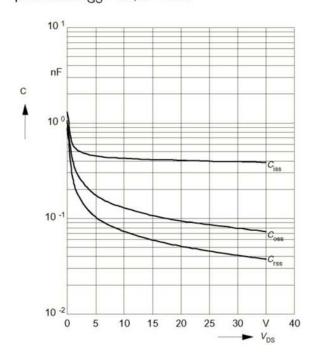


Typ. drain-source on-resistance

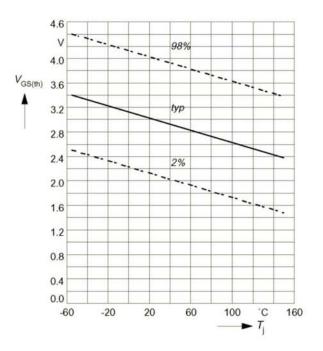
 $R_{\text{DS (on)}} = f(I_{\text{D}})$ parameter: V_{GS}



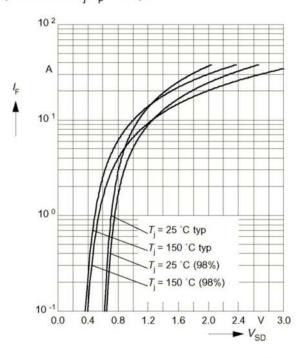
BUZ32 L3045A BUZ 32 SMD


Drain-source on-resistance

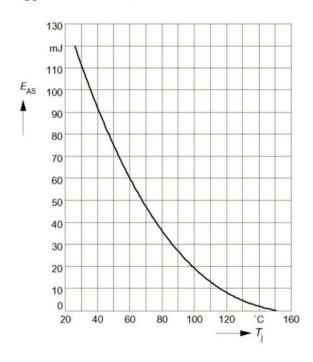
 $R_{\text{DS (on)}} = f(T_j)$ parameter: $I_{\text{D}} = 6 \text{ A}, V_{\text{GS}} = 10 \text{ V}$


Typ. capacitances

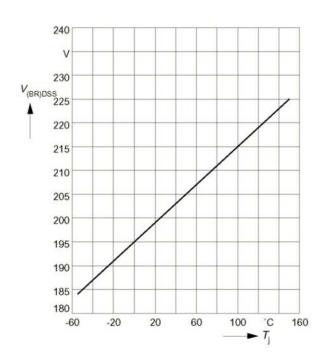
 $C = f(V_{DS})$ parameter: $V_{GS} = 0V$, f = 1MHz


Gate threshold voltage

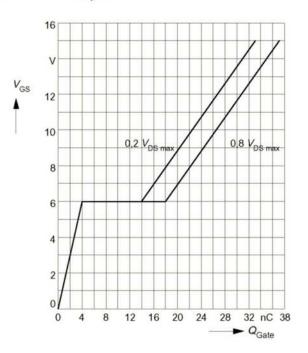
 $V_{\text{GS (th)}} = f(T_j)$ parameter: $V_{\text{GS}} = V_{\text{DS}}$, $I_{\text{D}} = 1 \text{ mA}$


Forward characteristics of reverse diode

 $I_{\rm F} = f(V_{\rm SD})$ parameter: $T_{\rm j}$, $t_{\rm p} = 80~\mu {\rm s}$



Avalanche energy $E_{AS} = f(T_j)$ parameter: $I_D = 9.5 \text{ A}, V_{DD} = 50 \text{ V}$ $R_{GS} = 25 \Omega, L = 2 \text{ mH}$



Drain-source breakdown voltage

 $V_{(BR)DSS} = f(T_j)$

Typ. gate charge $V_{GS} = f(Q_{Gate})$ parameter: $I_{D puls} = 14 \text{ A}$

