: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

bridgelu入.

Bridgelux SMD 2835 0.5W 3V

Product Data Sheet DS56

Introduction

The Bridgelux SMD 2835 mid power LED is hot-color targeted which ensures that the LEDs fall within their specified color bin at the typical application conditions of $85^{\circ} \mathrm{C}$. With its broad lumen coverage and wide range of CCT options, the SMD 2835 provides unparalleled design-in flexibility for indoor and outdoor lighting applications. The SMD 2835 is ideal as a drop in replacement for emitters with an industry standard $2.8 \mathrm{~mm} \times 3.5 \mathrm{~mm}$ footprint.

Features

- Industry-standard 2835 footprint
- 9 bin color control enables tight color control
- Hot-color targeting ensures that color is within the ANSI bin at the typical application conditions of $85^{\circ} \mathrm{C}$
- Enables 3- and 5-step MacAdam ellipse custom binning kits
- RoHS compliant and Pb free
- Multiple CCT configurations for a wide range of lighting applications

Benefits

- Lower operating and manufacturing cost
- Ease of design and rapid go-to-market
- Uniform consistent white light
- Reliable and constant white point
- Environmentally friendly, complies with standards
- Design flexibility

Contents

Product Feature Map
Product Nomenclature
Product Test Conditions
Product Selection Guide
Performance at Commonly Used Drive Currents
Electrical Characteristics
Absolute Maximum Ratings
Product Bin Definitions
Performance Curves
Typical Radiation Pattern
Typical Color Spectrum
Mechanical Dimensions
Reliability
Reflowing Characteristics
Packaging
Design Resources
Precautions
Disclaimers
About Bridgelux

Product Feature Map

Bridgelux SMD LED products come in industry standard package sizes and follow ANSI binning standards. These LEDs are optimized for cost and performance, helping to ensure highly competitive system lumen per dollar performance while addressing the stringent efficacy and reliability standards required for modern lighting applications.

Product Nomenclature

The part number designation for Bridgelux SMD 2835 is explained as follows:

Product Test Conditions

Bridgelux SMD 2835 LEDs are tested and binned with a 10 ms pulse of 150 mA at T_{j} (junction temperature) $=T_{\text {sp }}$ (solder point temperature) $=25^{\circ} \mathrm{C}$. Forward voltage and luminous flux are binned at a $T_{j}=T_{\text {sp }}=25^{\circ} \mathrm{C}$. while color is hot targeted at a $\mathrm{T}_{\text {sp }}$ of $85^{\circ} \mathrm{C}$.

Product Selection Guide

The following product configurations are available:
Table 1: Selection Guide. Pulsed Measurement Data at $150 \mathrm{~mA}\left(T_{j}=T_{\text {sp }}=25^{\circ} \mathrm{C}\right)$

Part Number ${ }^{16}$	Nominal CCT ${ }^{2}$ (K)	CR ${ }^{3.5}$	Nominal Drive Current (mA)	Forward Voltage ${ }^{4.5}$ (V)			Typical Pulsed Flux ($\operatorname{Im})^{4.5}$	Typical Power (W)	Typical Efficacy (Im / W)
				Min	Typical	Max			
BXEN-27E-11M-3A-00-0-0	2700	80	150	2.8	3.1	3.4	57	0.5	123
BXEN-30E-11M-3A-00-0-0	3000	80	150	2.8	3.1	3.4	60	0.5	129
BXEN-35E-11M-3A-00-0-0	3500	80	150	2.8	3.1	3.4	60	0.5	129
BXEN-40E-11M-3A-00-0-0	4000	80	150	2.8	3.1	3.4	64	0.5	138
BXEN-50E-11M-3A-00-0-0	5000	80	150	2.8	3.1	3.4	64	0.5	138
BXEN-57E-11M-3A-00-0-0	5700	80	150	2.8	3.1	3.4	64	0.5	138
BXEN-65E-11M-3A-00-0-0	6500	80	150	2.8	3.1	3.4	63	0.5	135

Table 2: Selection Guide, Stabilized DC Performance $\left(T_{\text {sp }}=85^{\circ} \mathrm{C}\right)^{7.8}$

Part Number ${ }^{1.6}$	Nominal CCT ${ }^{2}$ (K)	CR ${ }^{3.5}$	Nominal Drive Current (mA)	Forward Voltage ${ }^{5}$ (V)			Typical DC Flux $(\mathrm{Im})^{5}$	Typical Power (W)	Typical Efficacy ($\operatorname{Im} / \mathrm{W}$)
				Min	Typical	Max			
BXEN-27E-11M-3A-00-0-0	2700	80	150	2.7	3.0	3.3	50	0.4	111
BXEN-30E-11M-3A-00-0-0	3000	80	150	2.7	3.0	3.3	53	0.4	118
BXEN-35E-11M-3A-00-0-1	3500	80	150	2.7	3.0	3.3	53	0.4	118
BXEN-40E-11M-3A-00-0-0	4000	80	150	2.7	3.0	3.3	56	0.4	125
BXEN-50E-11M-3A-00-0-0	5000	80	150	2.7	3.0	3.3	56	0.4	125
BXEN-57E-11M-3A-00-0-0	5700	80	150	2.7	3.0	3.3	56	0.4	125
BXEN-65E-11M-3A-00-0-0	6500	80	150	2.7	3.0	3.3	54	0.4	121

Notes for Table 1 \& 2:

1. The last 6 characters (including hyphens '-') refer to flux bins, forward voltage bins, and color bin options, respectively. "00-0-00" denotes the full distribution of flux, forward voltage, and 7 SDCM color.
Example: BXEN-30E-11M-3A-00-0-0 refers to the full distribution of flux, forward voltage, and color within a 3000K 7-step ANSI standard chromaticity region with a minimum of 80 CRI , 1×1 die configuration, mid power, 3.3 V typical forward voltage.
2. Product CCT is hot targeted at $\mathrm{T}_{\text {Sp }}=85^{\circ} \mathrm{C}$. Nominal CCT as defined by ANSI C78.377-2011.
3. Listed CRIs are minimum values and include test tolerance.
4. Products tested under pulsed condition (10ms pulse width) at nominal drive current where $\mathrm{T}_{\mathrm{j}}=\mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$.
5. Bridgelux maintains a $\pm 7.5 \%$ tolerance on luminous flux measurements, $\pm 0.1 \mathrm{~V}$ tolerance on forward voltage measurements, and ± 2 tolerance on CRI measurements for the SMD 2835.
6. Refer to Table 6 and Table 7 for Bridgelux SMD 2835 Luminous Flux Binning and Forward Voltage Binning information.
7. Typical stabilized DC performance values are provided as reference only and are not a guarantee of performance.
8. Typical performance is estimated based on operation under DC (direct current) with LED emitter mounted onto a heat sink with thermal interface material and the solder point temperature maintained at $85^{\circ} \mathrm{C}$. Based on Bridgelux test setup, values may vary depending on the thermal design of the luminaire and/or the exposed environment to which the product is subjected.

Performance at Commonly Used Drive Currents

SMD 2835 LEDs are tested to the specifications shown using the nominal drive currents in Table 1. SMD 2835 may also be driven at other drive currents dependent on specific application design requirements. The performance at any drive current can be derived from the current vs. voltage characteristics shown in Figure 2 and the relative luminous flux vs. current characteristics shown in Figure 3. The performance at commonly used drive currents is summarized in Table 3.

Table 3: Performance at Commonly Used Drive Currents

Part Number	CRI	Drive Current ${ }^{1}$ (mA)	$\begin{aligned} & \text { Typical } \mathrm{V}_{\mathrm{f}} \\ & \mathrm{~T}_{\text {sp }}=25^{\circ} \mathrm{C} \\ & \text { (V) } \end{aligned}$	Typical Power $\begin{gathered} \mathrm{T}_{\text {sp }}=25^{\circ} \mathrm{C} \\ (W) \end{gathered}$	Typical Pulsed Flux ${ }^{2}$ $\begin{gathered} \mathrm{T}_{\text {sp }}=25^{\circ} \mathrm{C} \\ (\mathrm{Im}) \end{gathered}$	Typical DC Flux ${ }^{3}$ $\begin{gathered} \mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C} \\ (\mathrm{~lm}) \end{gathered}$	Typical Efficacy $\begin{aligned} & \mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C} \\ & (\mathrm{Im} / \mathrm{W}) \end{aligned}$
BXEN-27E-11M-3A-00-0-0	80	30	2.6	0.1	13	12	170
		60	2.8	0.2	26	23	154
		100	2.9	0.3	40	36	138
		150	3.1	0.5	57	50	123
		180	3.2	0.6	66	58	114
BXEN-30E-11M-3A-00-0-0	80	30	2.6	0.1	14	13	179
		60	2.8	0.2	27	24	162
		100	2.9	0.3	43	38	145
		150	3.1	0.5	60	53	129
		180	3.2	0.6	69	61	120
BXEN-35E-11M-3A-00-0-0	80	30	2.6	0.1	14	13	179
		60	2.8	0.2	27	24	162
		100	2.9	0.3	43	38	145
		150	3.1	0.5	60	53	129
		180	3.2	0.6	69	61	120
BXEN-40E-11M-3A-00-0-0	80	30	2.6	0.1	15	13	191
		60	2.8	0.2	29	26	173
		100	2.9	0.3	45	40	154
		150	3.1	0.5	64	56	138
		180	3.2	0.6	74	65	127
BXEN-50E-11M-3A-00-0-0	80	30	2.6	0.1	15	13	191
		60	2.8	0.2	29	26	173
		100	2.9	0.3	45	40	154
		150	3.1	0.5	64	56	138
		180	3.2	0.6	74	65	127
BXEN-57E-11M-3A-00-0-0	80	30	2.6	0.1	15	13	191
		60	2.8	0.2	29	26	173
		100	2.9	0.3	45	40	154
		150	3.1	0.5	64	56	138
		180	3.2	0.6	74	65	127
BXEN-65E-11M-3A-00-0-0	80	30	2.6	0.1	15	13	188
		60	2.8	0.2	28	25	170
		100	2.9	0.3	45	40	152
		150	3.1	0.5	63	54	135
		180	3.2	0.6	73	64	125

Notes for Table 3:

1. Alternate drive currents in Table 3 are provided for reference only and are not a guarantee of performance.
2. Bridgelux maintains $a \pm 7.5 \%$ tolerance on flux measurements.
3. Typical stabilized DC performance values are provided as reference only and are not a guarantee of performance.

Electrical Characteristics

Table 4: Electrical Characteristics

Part Number ${ }^{1}$	Drive Current (mA)	Forward Voltage (V) ${ }^{2,3}$			Typical Temperature Coefficient of Forward Voltage $\Delta \mathbf{V}_{f} / \Delta \mathrm{T}$ ($\mathrm{mV} /{ }^{\circ} \mathrm{C}$)	Typical Thermal Resistance Junction to Solder Point ${ }^{4}$ $\mathrm{R}_{\mathrm{j} \text {-sp }}{ }^{(\circ} \mathrm{C} / \mathrm{W}$)
		Minimum	Typical	Maximum		
BXEN-xxE-11M-3A-00-0-0	150	2.8	3.1	3.4	-1.9	18

Notes for Table 4:

1. The last 6 characters (including hyphens '-') refer to flux bins, forward voltage bins, and color bin options, respectively. "00-0-00" denotes the full distribution of flux, forward voltage, and 7 SDCM color.
Example: BXEN-30E-11M-3A-00-0-0 refers to the full distribution of flux. forward voltage, and color within a 3000K 7-step ANSI standard chromaticity region with a minimum of 80 CRI , 1×1 die configuration, mid power. 3.3 V typical forward voltage.
2. Bridgelux maintains a tolerance of $\pm 0.1 \mathrm{~V}$ on forward voltage measurements. Voltage minimum and maximum values at the nominal drive current are guaranteed by 100% test.
3. Products tested under pulsed condition (10ms pulse width) at nominal drive current where $T_{\text {sp }}=25^{\circ} \mathrm{C}$.
4. Thermal resistance value was calculated using total electrical input power: optical power was not subtracted from input power.

Absolute Maximum Ratings

Table 5: Maximum Ratings

Parameter	Maximum Rating
LED Junction Temperature (T_{j})	$125^{\circ} \mathrm{C}$
Storage Temperature	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Operating Solder Point Temperature ($T_{\text {Sp }}$)	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Soldering Temperature	$260^{\circ} \mathrm{C}$ or lower for a maximum of 10 seconds
Maximum Drive Current ${ }^{3}$	250 mA
Maximum Peak Pulsed Forward Current ${ }^{1}$	
Maximum Reverse Voltage ${ }^{2}$	-5 V
Moisture Sensitivity Rating	MSL 3
Electrostatic Discharge	2 FV HBM. JEDEC-JS-001-HBM and JEDEC-JS-001-2012

[^0]
Product Bin Definitions

Table 6 lists the standard photometric luminous flux bins for Bridgelux SMD 2835 LEDs. Although several bins are listed, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all CCTs.

Table 6: Luminous Flux Bin Definitions at $150 \mathrm{~mA}, T_{\text {sp }}=25^{\circ} \mathrm{C}$

Bin Code	Minimum	Maximum	Unit	Condition
2 A	50	55		
2 B	55	60	lm	
2 I	60	65		$\mathrm{I}_{\mathrm{F}}=150 \mathrm{~mA}$
2 D	65	70		
2 E	70	75		

Note for Table 6:

1. Bridgelux maintains a tolerance of $\pm 7.5 \%$ on luminous flux measurements.

Table 7: Forward Voltage Bin Definition at $150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$

Bin Code	Minimum	Maximum	Unit	
A	2.8	2.9		
B	2.9	3.0		
C	3.0	3.1	V	
D	3.1	3.2		
E	3.2	3.3		
F	3.3	3.4		

Note for Table 7

1. Bridgelux maintains a tolerance of $\pm 0.1 \mathrm{~V}$ on forward voltage measurements.

Product Bin Definitions

Table 8: 3- and 5-step MacAdam Ellipse Color Bin Definitions

CCT	Color Space	Center Point		Major Axis	Minor Axis	Ellipse Rotation Angle	Color Bin
		X	Y				
2700K	3 SDCM	0.4578	0.4101	0.00810	0.00420	53.70	1
	5 SDCM	0.4578	0.4101	0.01350	0.00700	53.70	1/A/B/C/D
3000 K	3 SDCM	0.4338	0.4030	0.00834	0.00408	53.22	1
	5 SDCM	0.4338	0.4030	0.01390	0.00680	53.22	1/A/B/C/D
3500K	3 SDCM	0.4103	0.3961	0.00927	0.00414	54.00	1
	5 SDCM	0.4103	0.3961	0.01545	0.00690	54.00	1/A/B/C/D
4000K	3 SDCM	0.3818	0.3797	0.00939	0.00402	53.72	1
	5 SDCM	0.3818	0.3797	0.01565	0.00670	53.72	1/A/B/C/D
5000K	3 SDCM	0.3447	0.3553	0.00822	0.00354	59.62	1
	5 SDCM	0.3447	0.3553	0.01370	0.00590	59.62	1/A/B/C/D
5700K	3 SDCM	0.3287	0.3417	0.00746	0.00320	59.09	1
	5 SDCM	0.3287	0.3417	0.01243	0.00533	59.09	1/A/B/C/D
6500 K	3 SDCM	0.3123	0.3282	0.00669	0.00285	58.57	1
	5 SDCM	0.3123	0.3282	0.01115	0.00475	58.57	1/A/B/C/D

Notes for Table 8:

1. Color binning at $\mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}$
2. Bridgelux maintains a tolerance of ± 0.007 on x and y color coordinates in the CIE 1931 color space.

Product Bin Definitions

Figure 1: C.I.E. 1931 Chromaticity Diagram (9 Color Bin Structure, hot-color targeted at $\mathrm{T}_{\mathrm{sp}}=85^{\circ} \mathrm{C}$)

Performance Curves

Figure 2: Drive Current vs. Voltage $\left(\mathrm{T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}\right)$

Figure 3: Typical Relative Luminous Flux vs. Drive Current $\left(\mathrm{T}_{\mathrm{sp}}=\mathbf{2} 5^{\circ} \mathrm{C}\right)$

[^1]
Performance Curves

Figure 4: Typical Relative DC Flux vs. Solder Point Temperature

Figure 5: Typical DC ccy Shift vs. Solder Point Temperature

Notes for Figures 4 \& 5 :

1. Characteristics shown for warm white based on 3000 K and 80 CRI .
2. Characteristics shown for neutral white based on 4000 K and 80 CRI .
3. Characteristics shown for cool white based on 6500 K and 80 CRI .
4. For other color SKUs, the shift in color will vary. Please contact your Bridgelux Sales Representative for more information.

Performance Curves

Figure 6: Typical DC ccx Shift vs. Solder Point Temperature

[^2]
Typical Radiation Pattern

Figure 7: Typical Spatial Radiation Pattern at $150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$

Notes for Figure 7:

1. Typical viewing angle is 120°.
2. The viewing angle is defined as the off axis angle from the centerline where luminous intensity (lv) is $1 / 2$ of the peak value

Figure 8: Typical Polar Radiation Pattern at $150 \mathrm{~mA}, \mathrm{~T}_{\mathrm{sp}}=25^{\circ} \mathrm{C}$

Typical Color Spectrum

Figure 9: Typical Color Spectrum

Notes for Figure 9

1. Color spectra measured at nominal current for $T_{\text {sp }}=25^{\circ} \mathrm{C}$
2. Color spectra shown for warm white is 2700 K and 80 CRI .
3. Color spectra shown for warm white is 3000 K and 80 CRI .
4. Color spectra shown for neutral white is 4000 K and 80 CRI

5 Color spectra shown for cool white is 6500 K and 80 CRI .

Mechanical Dimensions

Figure 10: Drawing for SMD 2835

Notes for Figure 10:

1. Drawings are not to scale.
2. Drawing dimensions are in millimeters.
3. Unless otherwise specified, tolerances are $\pm 0.10 \mathrm{~mm}$.

Recommended PCB Soldering Pad Pattern

Reliability

Table 9: Reliability Test Items and Conditions

No.	Items	Reference Standard	Test Conditions	Drive Current	Test Duration	Units Failed/Tested
1	Moisture/Reflow Sensitivity	J-STD-020E	$\begin{gathered} T_{\text {sld }}=260^{\circ} \mathrm{C}, 10 \mathrm{sec}, \\ \text { Precondition: } 60^{\circ} \mathrm{C}, 60 \% \mathrm{RH}, 168 \mathrm{hr} \end{gathered}$	-	3 reflows	0/22
2	Low Temperature Storage	JESD22-A119	$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$	-	1000 hours	0/22
3	High Temperature Storage	JESD22-A103D	$\mathrm{T}_{\mathrm{a}}=100^{\circ} \mathrm{C}$	-	1000 hours	0/22
4	Low Temperature Operating Life	JESD22-A108D	$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C}$	150 mA	1000 hours	0/22
5	Temperature Humidity Operating Life	JESD22-A101C	$\mathrm{T}_{\text {sp }}=85^{\circ} \mathrm{C}, \mathrm{RH}=85 \%$	150 mA	1000 hours	0/22
6	High Temperature Operating Life	JESD22-A108D	$\mathrm{T}_{\text {sp }}=105^{\circ} \mathrm{C}$	180mA	1000 hours	0/22
7	Power switching	\|EC62717:2014	$\mathrm{T}_{\mathrm{sp}}=105^{\circ} \mathrm{C}$ 30 sec on, 30 sec off	180mA	30000 cycles	0/22
8	Thermal Shock	JESD22-A106B	$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C}$ Dwell: 15min; Transfer: 10sec	-	200 cycles	0/22
9	Temperature Cycle	JESD22-A104E	$\mathrm{T}_{\mathrm{a}}=-40^{\circ} \mathrm{C} \sim 100^{\circ} \mathrm{C} \text {; }$ Dwell at extreme temperature: $15 \mathrm{~min} ;$ Ramp rate $<105^{\circ} \mathrm{C} / \mathrm{min}$	-	200 cycles	0/22
10	Electrostatic Discharge	JS-001-2012	HBM, 2KV, 1.5k Ω, 100pF, Alternately positive or negative	-	-	0/22

Passing Criteria

Item	Symbol	Test Condition	Passing Criteria
Forward Voltage	Vf	150 mA	$\Delta \mathrm{Vf}<10 \%$
Luminous Flux	FV	150 mA	$\Delta \mathrm{FV}<30 \%$
Chromaticity Coordinates	(x, y)	150 mA	$\Delta \mathrm{u}^{\prime} \mathrm{V}^{\prime}<0.007$

[^3]
Reflowing Characteristics

Figure 11 : Reflow Profile

Figure 12 : Pick and Place

Is greater than LEDs emitting surface

[^4]
Packaging

Figure 13: Emitter Reel Drawings

Note for Figure 13:

1. Drawings are not to scale. Drawing dimensions are in millimeters.

Figure 14: Emitter Tape Drawings

Note for Figure 14:

1. Drawings are not to scale. Drawing dimensions are in millimeters.

Packaging

Figure 15: Emitter Reel Packaging Drawings

Note for Figure 15:

1. Drawings are not to scale.

Design Resources

Please contact your Bridgelux sales representative for assistance.

Precautions

CAUTION: CHEMICAL EXPOSURE HAZARD

Exposure to some chemicals commonly used in luminaire manufacturing and assembly can cause damage to the LED emitter. Please consult Bridgelux Application Note AN51 for additional information.

CAUTION: EYE SAFETY

Eye safety classification for the use of Bridgelux SMD LED emitter is in accordance with IEC specification EN62471: Photobiological Safety of Lamps and Lamp Systems. SMD LED emitters are classified as Risk Group 1 when operated at or below the maximum drive current. Please use appropriate precautions. It is important that employees working with LEDs are trained to use them safely.

CAUTION: RISK OF BURN

Do not touch the SMD LED emitter during operation. Allow the emitter to cool for a sufficient period of time before handling. The SMD LED emitter may reach elevated temperatures such that could burn skin when touched.

CAUTION

CONTACT WITH LIGHT EMITTING SURFACE (LES)

Avoid any contact with the LES. Do not touch the LES of the emitter or apply stress to the LES (yellow phosphor resin area). Contact may cause damage to the emitter
Optics and reflectors must not be mounted in contact with the LES (yellow phosphor resin area).

Disclaimers

MINOR PRODUCT CHANGE POLICY

The rigorous qualification testing on products offered by Bridgelux provides performance assurance. Slight cosmetic changes that do not affect form, fit, or function may occur as Bridgelux continues product optimization.

STANDARD TEST CONDITIONS
 Unless otherwise stated, LED emitter testing is performed at the nominal drive current.

About Bridgelux: We Build Light That Transforms

At Bridgelux, we help companies, industries and people experience the power and possibility of light. Since 2002, we've designed LED solutions that are high performing, energy efficient, cost effective and easy to integrate. Our focus is on light's impact on human behavior, delivering products that create better environments, experiences and returns-both experiential and financial. And our patented technology drives new platforms for commercial and industrial luminaires.

For more information about the company, please visit bridgelux.com
twitter.com/Bridgelux
facebook.com/Bridgelux
WeChat ID: BridgeluxlnChina

101 Portola Avenue
Livermore, CA 94551
Tel (925) 583-8400
Fax (925) 583-8410
wwww.bridgelux.com

[^0]: Notes for Table 5:

 1. Bridgelux recommends a maximum duty cycle of 10% and pulse width of 10 ms when operating LED SMD at maximum peak pulsed current specified. Maximum peak pulsed current indicate values where LED SMD can be driven without catastrophic failures.
 2. Light emitting diodes are not designed to be driven in reverse voltage and will not produce light under this condition. Maximum rating provided for reference only.
 3. The maximum drive current for LM80 test results is based on the nominal drive current listed.
[^1]: Note for Figure 3

 1. Bridgelux does not recommend driving high power LEDs at low currents. Doing so may produce unpredictable results. Pulse width modulation (PWM) is recommended for dimming effects.
[^2]: Notes for Figure 6:

 1. Characteristics shown for warm white based on 3000 K and 80 CRI .
 2. Characteristics shown for neutral white based on 4000 K and 80 CRI .
 3. Characteristics shown for cool white based on 6500 K and 80 CRI .
 4. For other color SKUs, the shift in color will vary. Please contact your Bridgelux Sales Representative for more information.
[^3]: Notes for Table 9:

 1. Measurements are performed after allowing the LEDs to return to room temperature
 2. $T_{\text {sld }}$: reflow soldering temperature: T_{a} : ambient temperature
[^4]: Note for Figure 12:

 1. When using a pick and place machine, choose a nozzle that has a larger diameter than the LED's emitting surface. Using a Pick-and-Place nozzle with a smaller diameter than the size of the LEDs emitting surface will cause damage and may also cause the LED to not illuminate.
