

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

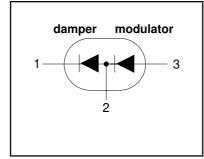
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Dual diode fast, high-voltage


BYM359X

FEATURES

- · Low forward volt drop
- Fast switchingSoft recovery characteristicHigh thermal cycling
- performance

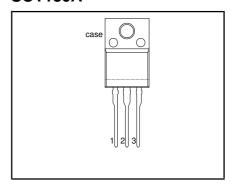
Isolated mounting tab

SYMBOL

QUICK REFERENCE DATA

DAMPER	MODULATOR
V _R =1500 V	V _R =800 V
V _F ≤ 1.3 V	V _F ≤ 1.45 V
I _{F(RMS)} =15.7 A	I _{F(RMS)} = 11 A
I _{FSM} ≤ 60 A	I _{FSM} ≤ 60 A
t _{rr} ≤ 300 ns	t _{rr} ≤ 145 ns

GENERAL DESCRIPTION


Combined damper and modulator diodes in an isolated plastic envelope for horizontal deflection in colour TV and PC monitors. The BYM359X contains diodes with performance characteristics designed specifically for applications from 16kHz to 56kHz

The BYM359X series is supplied in the conventional leaded SOT186A package.

PINNING

PIN	DESCRIPTION
1	damper cathode
2	common anode/cathode
3	modulator anode.

SOT186A

LIMITING VALUES

T_i = 25 °C unless otherwise stated

			DAM	IPER	MODU	LATOR	
SYMBOL	PARAMETER	CONDITIONS	MIN	MAX	MIN	MAX	UNIT
V _{RSM}	Peak non-repetitive reverse voltage.		-	1500	-	800	V
V_{RRM}	Peak repetitive reverse voltage		-	1500	-	600	V
V_{RWM}	Crest working reverse voltage		-	1300	-	600	V
I _{F(AV)} I _{F(RMS)} I _{FRM}	Average forward current RMS forward current Peak repetitive forward current Peak non-repetitive forward current	sinusoidal;a=1.57 $t=25 \ \mu s \ \delta = 0.5$ $T_{hs} \leq 83 \ ^{\circ}C$ $t=10ms$ $t=8.3 \ ms$ sinusoidal; with reapplied	- - - -	10 15.7 20 60 66	- - - -	8 11.0 16.0 60 66	A A A A
T_{stg}^{stg}	Storage temperature Operating junction temperature	V _{RWM(MAX)}	-40 -	150 150	-40 -	150 150	Ç

Philips Semiconductors Product specification

Dual diode fast, high-voltage

BYM359X

ISOLATION LIMITING VALUE & CHARACTERISTIC

 T_{hs} = 25 °C unless otherwise specified

SYMBOL	PARAMETER	CONDITIONS	MIN.	TYP.	MAX.	UNIT
V _{isol}	R.M.S. isolation voltage from all three terminals to external heatsink	f = 50-60 Hz; sinusoidal waveform; R.H. ≤ 65% ; clean and dustfree	-	-	2500	٧
C _{isol}	Capacitance from T2 to external heatsink	f = 1 MHz	-	10	-	pF

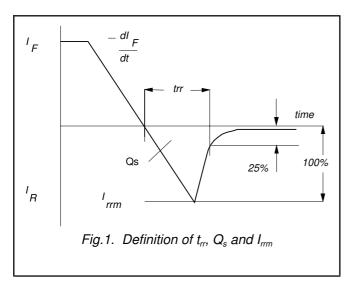
THERMAL RESISTANCES

			DAM	PER	MODU	LATOR	
SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	TYP.	MAX.	UNIT
R _{th j-hs}	Thermal resistance junction to heatsink	with heatsink compound	-	4.8	-	4.8	K/W
R _{th j-a}	Thermal resistance junction to ambient	in free air.	55	-	-	55	K/W

STATIC CHARACTERISTICS

T_i = 25 °C unless otherwise stated

			DAM	PER	MODU	LATOR	
SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	TYP.	MAX.	UNIT
V _F	Forward voltage Reverse current	$ \begin{vmatrix} I_F = 6.5 \text{ A} \\ I_F = 6.5 \text{ A}; T_j = 125^{\circ}\text{C} \\ V_R = V_{RWM} \\ V_R = V_{RWM} \\ T_i = 100^{\circ}\text{C} \end{vmatrix} $	1.1 1.05 10 50	1.45 1.3 250 500	1.15 1.1 10 100	1.55 1.45 100 600	V μΑ μΑ


DYNAMIC CHARACTERISTICS

T_i = 25 °C unless otherwise stated

			DAM	IPER	MODU	LATOR	
SYMBOL	PARAMETER	CONDITIONS	TYP.	MAX.	TYP.	MAX.	UNIT
$egin{array}{c} t_{rr} \\ Q_s \\ V_{fr} \end{array}$	Reverse recovery time Reverse recovery charge Peak forward recovery voltage	$I_F = 1 \text{ A; } V_R \ge 30 \text{ V;} \\ -dI_F/dt = 50 \text{ A/}\mu\text{s} \\ 2 \text{ A,30 V,20 A/}\mu\text{s} \\ I_F = 6.5 \text{ A;}$	200 1.2 27	300 2.0	125 0.5 18.0	145 0.7 -	ns μC V
		$dI_F/dt = 50 A/\mu s$					

Dual diode fast, high-voltage

BYM359X

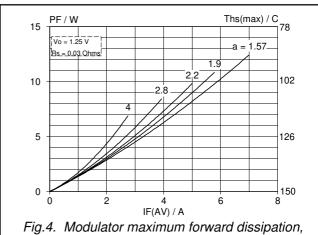
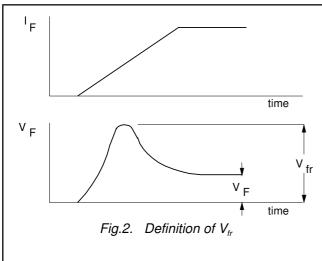



Fig.4. Modulator maximum forward dissipation, $P_F = f(I_{F(AV)})$; sinusoidal current waveform; parameter $a = form \ factor = I_{F(RMS)}/I_{F(AV)}$.

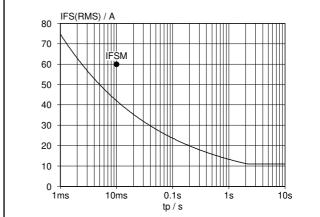


Fig.5. Modulator maximum non-repetitive rms forward current. $I_F = f(t_p)$; sinusoidal current waveform; $T_j = 150^{\circ}\text{C}$ prior to surge with reapplied V_{RWM} .

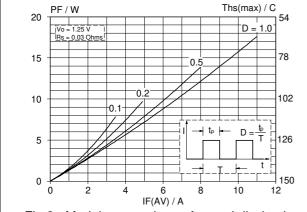
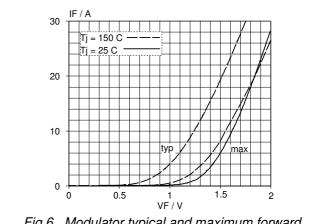
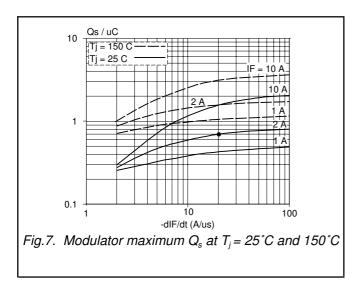
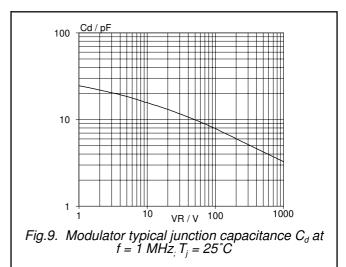
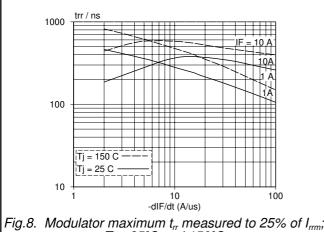


Fig.3. Modulator maximum forward dissipation, $P_F = f(I_{F(AV)})$; square wave current waveform; parameter $D = duty \ cycle = t_p/T$.


Fig.6. Modulator typical and maximum forward characteristic; $I_F = f(V_F)$; parameter T_i

Dual diode fast, high-voltage

BYM359X

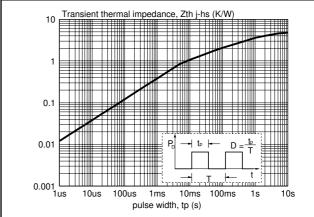


Fig.8. Modulator maximum t_{rr} measured to 25% of I_{rrm} ; $T_j = 25^{\circ}\text{C}$ and 150 $^{\circ}\text{C}$

Fig. 10. Modulator transient thermal impedance $Z_{th} = f(t_p)$

Dual diode fast, high-voltage

BYM359X

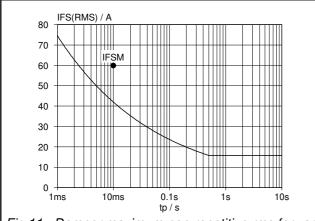


Fig.11. Damper maximum non-repetitive rms forward current. $I_F = f(t_p)$; sinusoidal current waveform; $T_j = 150$ °C prior to surge with reapplied V_{RWM} .

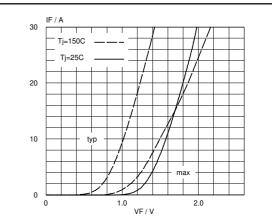


Fig.13. Damper forward characteristic $I_F = f(V_F)$; parameter T_j

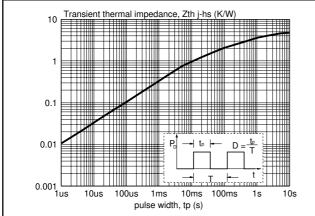
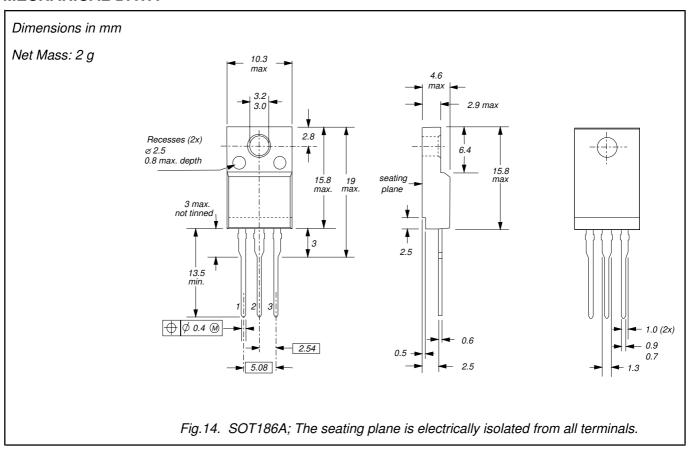



Fig.12. Damper transient thermal impedance $Z_{th} = f(t_p)$

Dual diode fast, high-voltage BYM359X

MECHANICAL DATA

- Notes
 1. Refer to mounting instructions for F-pack envelopes.
 2. Epoxy meets UL94 V0 at 1/8".

Philips Semiconductors Product specification

Dual diode fast, high-voltage

BYM359X

DEFINITIONS

Data sheet status					
Objective specification	This data sheet contains target or goal specifications for product development.				
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.				
Product specification	This data sheet contains final product specifications.				
Limiting values					

Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

© Philips Electronics N.V. 1999

All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.

The information presented in this document does not form part of any quotation or contract, it is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent or other industrial or intellectual property rights.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.