: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

HIGH EFFICIENCY FAST RECOVERY DIODES

MAIN PRODUCT CHARACTERISTICS

$\mathbf{I}_{\mathbf{F}(\mathrm{AV})}$	30 A
$\mathrm{~V}_{\mathrm{RRM}}$	400 V
trr	50 ns
$\mathrm{~V}_{\mathrm{F}}$	1.4 V

FEATURES AND BENEFITS

- VERY LOW REVERSE RECOVERY TIME
- VERY LOW SWITCHING LOSSES
- LOW NOISE TURN-OFF SWITCHING
- SMD PACKAGE

DESCRIPTION

Single rectifier suited for freewheeling in converters and motor control circuits.
Packaged in D^{2} PAK, this surface mount device is intended for use in high frequency inverters, free wheeling and polarity protection applications.

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
VRRM	Repetitive peak reverse voltage		400	V
$\mathrm{I}_{\text {F (RMS }}$	RMS forward current		50	A
$\mathrm{I}_{\mathrm{F}(\mathrm{AV})}$	Average forward current	$\begin{aligned} & \mathrm{TC}=100^{\circ} \mathrm{C} \\ & \delta=0.5 \end{aligned}$	30	A
IFSM	Surge non repetitive forward current	$\mathrm{tp}=10 \mathrm{~ms}$ sinusoidal	350	A
IFRM	Repetitive peak forward current	$\begin{aligned} & \mathrm{tp}=5 \mu \mathrm{~s} \\ & \mathrm{f}=5 \mathrm{kHz} \end{aligned}$	280	A
Tstg Tj	Storage and junction temperature range		-40 to +150	${ }^{\circ} \mathrm{C}$

THERMAL RESISTANCE

| Symbol | Parameter | Value | Unit |
| :---: | :--- | :---: | :---: | :---: |
| Rth (j-c) | Junction to case | 1 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

STATIC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
I_{R} *	Reverse leakage current	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			35	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$			6	mA
V_{F} **	Forward voltage drop	$\mathrm{IF}=30 \mathrm{~A}$	$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$			1.4	V
		$\mathrm{I}_{\mathrm{F}}=30 \mathrm{~A}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$			1.5	

Pulse test: *tp $=5 \mathrm{~ms}, \delta<2 \%$
** $\mathrm{tp}=380 \mu \mathrm{~s}, \delta<2 \%$
To evaluate the conduction losses use the following equation :
$\mathrm{P}=1.1 \times \mathrm{I}_{\mathrm{F}(\mathrm{AV})}+0.0095 \mathrm{I}_{\mathrm{F}}{ }^{2}(\mathrm{RMS})$

RECOVERY CHARACTERISTICS

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
trr	Reverse recovery time	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C} \\ & \mathrm{Irr}=0.25 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{I}_{F}=0.5 \mathrm{~A} \\ & \mathrm{I}_{\mathrm{R}}=1 \mathrm{~A} \end{aligned}$			50	ns
		$\begin{aligned} & \mathrm{T}_{j}=25^{\circ} \mathrm{C} \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-15 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\begin{aligned} & I_{F}=1 \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{R}}=30 \mathrm{~V} \end{aligned}$			100	

TURN-OFF SWITCHING CHARACTERISTICS

Symbol	Parameter	Test Conditions		Min.	Typ.	Max.	Unit
tIRM	Maximum reverse recovery time	$\begin{aligned} & T_{j}=100^{\circ} \mathrm{C} \\ & I_{F}=30 \mathrm{~A} \\ & V_{C C}=200 \mathrm{~V} \\ & L p<0.05 \mu \mathrm{H} \end{aligned}$	$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-120 \mathrm{~A} / \mu \mathrm{s}$			75	ns
			$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-240 \mathrm{~A} / \mu \mathrm{s}$		50		
IRM	Maximum reverse recovery current		$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-120 \mathrm{~A} / \mu \mathrm{s}$			9	ns
			$\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-240 \mathrm{~A} / \mu \mathrm{s}$		12		
C factor	Turn-off overvoltage coefficient	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=60 \mathrm{~V} \\ & \mathrm{dl}_{\mathrm{F}} / \mathrm{dt}=-30 \mathrm{~A} \end{aligned}$	$\begin{aligned} \mathrm{I}_{\mathrm{F}} & =\mathrm{I}_{\mathrm{F}(\mathrm{AV})} \\ \mathrm{Lp} & =1 \mu \mathrm{H} \end{aligned}$		3.3		/

PIN OUT configuration in D^{2} PAK:

Fig. 1 : Average forward power dissipation versus average forward current.

Fig. 3 : Forward voltage drop versus forward current (maximum values).

Fig. 5 : Non repetitive surge peak forward current versus overload duration.

Fig. 2 : Peak current versus form factor.

Fig. 4 : Relative variation of thermal impedance junction to case versus pulse duration.

Fig. 6 : Average current versus ambient temperature. ($\delta: 0.5$)

Fig. 7 : Reverse recovery charge versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$.

Fig. 9 : Peak reverse current versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$.

Fig.11: Dynamic parameters versus junction temperature.

Fig. 8 : Forward recovery times versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$.

Fig. 10 : Peak forward voltage versus $\mathrm{dl}_{\mathrm{F}} / \mathrm{dt}$.

PACKAGE MECHANICAL DATA
D^{2} PAK (Plastic)

	REF.	DIMENSIONS			
		Millimeters		Inches	
		Min.	Max.	Min.	Max.
	A	4.40	4.60	0.173	0.181
	A1	2.49	2.69	0.098	0.106
	A2	0.03	0.23	0.001	0.009
	B	0.70	0.93	0.027	0.037
	B2	1.14	1.70	0.045	0.067
	C	0.45	0.60	0.017	0.024
	C2	1.23	1.36	0.048	0.054
	D	8.95	9.35	0.352	0.368
	E	10.00	10.40	0.393	0.409
	G	4.88	5.28	0.192	0.208
	L	15.00	15.85	0.590	0.624
	L2	1.27	1.40	0.050	0.055
	L3	1.40	1.75	0.055	0.069
	M	2.40	3.20	0.094	0.126
	R		yp.	0.0	typ.
	V2	0°	8°	0°	8°

FOOT PRINT (in millimeters)

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
© 1999 STMicroelectronics - Printed in Italy - All rights reserved.
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - U.S.A.
http://www.st.com

