: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FAST RECOVERY RECTIFIER DIODES

- VERY LOW REVERSE RECOVERY TIME
- VERY LOW SWITCHING LOSSES
- LOW NOISE TURN-OFF SWITCHING
- INSULATED: Capacitance 15pF

SUITABLE APPLICATIONS

- FREE WHEELING DIODE IN CONVERTERS AND MOTOR CONTROL CIRCUITS
- RECTIFIER IN S.M.P.S.

ABSOLUTE RATINGS (limiting values)

Symbol	Parameter		Value	Unit
$I_{\text {FRM }}$	Repetive Peak Forward Current	$\mathrm{t}_{\mathrm{p}} \leq 10 \mu \mathrm{~s}$	500	A
$\mathrm{IF}_{\text {(} \mathrm{RMS} \text {) }}$	RMS Forward Current		50	A
$\mathrm{I}_{\mathrm{F}}(\mathrm{AV})$	Average Forward Current	$\begin{aligned} & \mathrm{T}_{\mathrm{c}}=60^{\circ} \mathrm{C} \\ & \delta=0.5 \end{aligned}$	30	A
$\mathrm{I}_{\text {FSM }}$	Surge non Repetitive Forward Current	$\begin{aligned} & t_{p}=10 \mathrm{~ms} \\ & \text { Sinusoidal } \end{aligned}$	350	A
P	Power Dissipation	$\mathrm{T}_{\mathrm{c}}=60^{\circ} \mathrm{C}$	50	W
$\mathrm{T}_{\text {stg }} \mathrm{T}_{\mathrm{j}}$	Storage and Junction Temperature Range		$\begin{aligned} & -40 \text { to }+150 \\ & -40 \text { to }+150 \end{aligned}$	${ }^{\circ} \mathrm{C}$

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {RRM }}$	Repetitive Peak Reverse Voltage	400	V
$\mathrm{~V}_{\text {RSM }}$	Non Repetitive Peak Reverse Voltage	440	V

THERMAL RESISTANCE

Symbol	Parameter	Value	Unit
$\mathrm{R}_{\text {th }(\mathrm{j}-\mathrm{c})}$	Junction-case	1.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

STATIC CHARACTERISTICS

Synbol	Test Conditions		Min.	Typ.	Max.	Unit
I_{R}	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{R}}=\mathrm{V}_{\text {RRM }}$			35	$\mu \mathrm{A}$
	$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$				6	mA
V_{F}	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{F}=30 \mathrm{~A}$			1.5	V
	$\mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C}$				1.4	

RECOVERY CHARACTERISTICS

Symbol	Test Conditions				Min.	Typ.	Max.	Unit
$t_{\text {rr }}$	$\mathrm{T}_{\mathrm{j}}=25^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=1 \mathrm{~A}$	$\mathrm{diF}_{\mathrm{F}} / \mathrm{dt}=-15 \mathrm{~A} / \mu \mathrm{s}$	$\mathrm{V}_{\mathrm{R}}=30 \mathrm{~V}$			100	ns
		$\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}$	$\mathrm{I}_{\mathrm{R}}=1 \mathrm{~A}$	$\mathrm{I}_{\mathrm{rr}}=0.25 \mathrm{~A}$			50	

TURN-OFF SWITCHING CHARACTERISTICS (Without Series Inductance)

Symbol	Test Conditions		Min.	Typ.	Max.	Unit
$\mathrm{t}_{\text {IRM }}$	$\mathrm{diF} / \mathrm{dt}=-120 \mathrm{~A} / \mu \mathrm{s}$	$\begin{array}{ll} V_{C C}=200 \mathrm{~V} & I_{F}=30 \mathrm{~A} \\ L_{p} \leq 0.05 \mu \mathrm{H} & T_{j}=100^{\circ} \mathrm{C} \\ \text { See figure } 11 \end{array}$			75	ns
	$\mathrm{diF} / \mathrm{dt}=-240 \mathrm{~A} / \mu \mathrm{s}$			50		
IRM	$\mathrm{diF} / \mathrm{dt}=-120 \mathrm{~A} / \mu \mathrm{s}$				9	A
	$\mathrm{diF} / \mathrm{dt}=-240 \mathrm{~A} / \mu \mathrm{s}$			12		

TURN-OFF OVERVOLTAGE COEFFICIENT (With Series Inductance)

Symbol	Test Conditions				Min.	Typ.	Max.	Unit
$\mathrm{C}=\frac{\mathrm{V}_{\mathrm{RP}}}{\mathrm{~V}_{\mathrm{CC}}}$	$\begin{aligned} & \mathrm{T}_{\mathrm{j}}=100^{\circ} \mathrm{C} \\ & \mathrm{diF} / \mathrm{dt}=-30 \mathrm{~A} / \mu \mathrm{s} \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=60 \mathrm{~V} \\ \mathrm{~L}_{\mathrm{p}}=1 \mu \mathrm{H} \end{gathered}$	$\mathrm{I}_{\mathrm{F}}=\mathrm{I}_{\mathrm{F}}(\mathrm{AV})$ See figure 12	See note		3.3		

To evaluate the conduction losses use the following equations:
$V_{F}=1.1+0.0095 \mathrm{IF}_{\mathrm{F}} \quad \mathrm{P}=1.1 \times \mathrm{IF}_{\text {F }}(\mathrm{AV})+0.0095 \mathrm{IF}^{2}$ (RMS)

Figure 1. Low frequency power losses versus average current

Figure 2. Peak current versus form factor

Figure 3. Non repetitive peak surge current versus overload duration

Figure 5. Voltage drop versus forward current

Figure 7. Recovery time versus $\mathbf{d i} / / \mathrm{d}_{\mathrm{t}}$

Figure 4. Thermal impedance versus pulse width

Figure 6. Recovery charge versus $\mathrm{dif}_{\mathrm{F}} / \mathrm{d}_{\mathrm{t}}$

Figure 8. Peak reverse current versus $\mathrm{dif}_{\mathrm{F}} / \mathrm{d}_{\mathrm{t}}$

Figure 9. Peak forward voltage versus $\mathrm{diF}_{\mathrm{F}} / \mathrm{d}_{\mathrm{t}}-$

Figure 10. Dynamic parameters versus junction temperature.

Figure 11. Turn-off switching characteristics (without series inductance).

Figure 12. Turn-off switching characteristics (with series inductance)

PACKAGE MECHANICAL DATA :

Isolated DOP3I Plastic

- Marking: type number
- Cooling method: by conduction (method C)
- Weight: 4.52g
- Recommended torque value: 80 cm . N
- Maximum torque value: 100 cm . N

[^0]The ST logo is a registered trademark of STMicroelectronics © 1998 STMicroelectronics - Printed in Italy - All rights reserved.

STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - Canada - China - France - Germany - Italy - Japan - Korea - Malaysia - Malta - Mexico - Morocco The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A.

[^0]: Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responslbility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied.
 STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

