mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Sensitive Gate Silicon Controlled Rectifiers Reverse Blocking Thyristors

Glassivated PNPN devices designed for high volume consumer applications such as temperature, light, and speed control; process and remote control, and warning systems where reliability of operation is important.

Features

- Glassivated Surface for Reliability and Uniformity
- Power Rated at Economical Prices
- Practical Level Triggering and Holding Characteristics
- Flat, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability
- Sensitive Gate Triggering
- These are Pb-Free Devices

MAXIMUM RATINGS (T_J = 25°C unless otherwise noted)

Characteristic	Symbol	Max	Unit
Peak Repetitive Off–State Voltage (Note 1) (Sine Wave, 50–60 Hz, $R_{GK} = 1 \text{ k}\Omega$, $T_{C} = -40^{\circ}$ to 110°C)	V _{DRM,} V _{RRM}		V
C106B C106D, C106D1* C106M, C106M1*		200 400 600	
On-State RMS Current (180° Conduction Angles, T _C = 80°C)	I _{T(RMS)}	4.0	A
Average On-State Current (180° Conduction Angles, T _C = 80°C)	I _{T(AV)}	2.55	A
Peak Non-Repetitive Surge Current (1/2 Cycle, Sine Wave, 60 Hz, T _J = +25°C)	I _{TSM}	20	A
Circuit Fusing Considerations (t = 8.3 ms)	l ² t	1.65	A ² s
Forward Peak Gate Power (Pulse Width \leq 1.0 μ sec, T _C = 80°C)	P _{GM}	0.5	W
Forward Average Gate Power (Pulse Width \leq 1.0 μ sec, T _C = 80°C)	P _{G(AV)}	0.1	W
Forward Peak Gate Current (Pulse Width \leq 1.0 μ sec, T _C = 80°C)	I _{GM}	0.2	A
Operating Junction Temperature Range	TJ	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C
Mounting Torque (Note 2)	_	6.0	in. lb.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

- V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.
- Torque rating applies with use of compression washer (B52200F006). Mounting torque in excess of 6 in. lb. does not appreciably lower case-to-sink thermal resistance. Anode lead and heatsink contact pad are common.

Littelfuse.com

SCRs 4 A RMS. 200 – 600 Volts

MARKING DIAGRAM & PIN ASSIGNMENT

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 5 of this data sheet.

THERMAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	3.0	°C/W
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	75	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8 in. from Case for 10 Seconds	ΤL	260	°C

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted.)

Characteristic		Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS						
Peak Repetitive Forward or Reverse Blocking Current (V _{AK} = Rated V _{DRM} or V _{RRM} , R _{GK} = 1 k Ω)	T _J = 25°C T _J = 110°C	I _{DRM} , I _{RRM}			10 100	μΑ μΑ
ON CHARACTERISTICS						
Peak Forward On-State Voltage (Note 3) (I _{TM} = 4 A)		V _{TM}	_	_	2.2	V
Gate Trigger Current (Continuous dc) (Note 4) $(V_{AK} = 6 \text{ Vdc}, R_L = 100 \Omega)$	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	I _{GT}		15 35	200 500	μΑ
Peak Reverse Gate Voltage (I _{GR} = 10 μA)		V _{GRM}	-	-	6.0	V
Gate Trigger Voltage (Continuous dc) (Note 4) $(V_{AK} = 6 \text{ Vdc}, R_L = 100 \Omega)$	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	V _{GT}	0.4 0.5	0.60 0.75	0.8 1.0	V
Gate Non-Trigger Voltage (Continuous dc) (Note 4) $(V_{AK} = 12 \text{ V}, \text{ R}_{L} = 100 \Omega, \text{ T}_{J} = 110^{\circ}\text{C})$		V _{GD}	0.2	-	_	V
Latching Current (V _{AK} = 12 V, I _G = 20 mA, R _{GK} = 1 k Ω)	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$	ΙL		0.20 0.35	5.0 7.0	mA
Holding Current (V _D = 12 Vdc) (Initiating Current = 20 mA, R _{GK} = 1 kΩ)	$T_J = 25^{\circ}C$ $T_J = -40^{\circ}C$ $T_J = +110^{\circ}C$	Ι _Η		0.19 0.33 0.07	3.0 6.0 2.0	mA

Critical Rate-of-Rise of Off-State Voltage	dv/dt	-	8.0	-	V/μs
(V _{AK} = Rated V _{DRM} , Exponential Waveform, R_{GK} = 1 k Ω ,					
T _J = 110°C)					

Voltage Current Characteristic of SCR

+ Current

Symbol	Parameter	
VDRM	Peak Repetitive Off State Forward Voltage	
DRM	Peak Forward Blocking Current	on state ´
V _{RRM}	Peak Repetitive Off State Reverse Voltage	I _{RRM} at V _{RRM}
RRM	Peak Reverse Blocking Current	
Vтм	Peak On State Voltage	+ Voltage
Н	Holding Current	Reverse Blocking Region
	·	(off state)
		(off state)
		Reverse Avalanche Region
		Anode –
		፼ ¹⁰ JUNCTION TEMPERATURE ≈ 110°C
10		$\square \qquad \square \qquad$
10 00 90		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
10 00 90 80	DC	10 10 10 10 10°C 8 HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD
10 00 90 80 70	DC	10 JUNCTION TEMPERATURE ≈ 110°C 8 HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD 6 50 TO 400Hz.
10 00 90 80 70 60	DC	10 JUNCTION TEMPERATURE ≈ 110°C 8 HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD 6
10 90 90 80 70 60 50	DC	10 JUNCTION TEMPERATURE ≈ 110°C 8 HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD 6 50 TO 400Hz.
10 90 90 80 70 60 50 HALF 90 HALF		10 JUNCTION TEMPERATURE ≈ 110°C 8 HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD 6 50 TO 400Hz.
10 00 90 80 70 60 50 HALF RESIS 30 -50 to 4	DC DC SINE WAVE TIVE OR INDUCTIVE LOAD.	10 JUNCTION TEMPERATURE ≈ 110°C 8 HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD 6 50 TO 400Hz.
10 00 90 80 70 60 50 HALF RESIS 30 -50 to 4 20	DC DC SINE WAVE STIVE OR INDUCTIVE LOAD. HOO Hz	10 JUNCTION TEMPERATURE ≈ 110°C 8 HALF SINE WAVE RESISTIVE OR INDUCTIVE LOAD 6 50 TO 400Hz. 2
10 00 90 80 70 60 50 40 RESIS 30 50 to 4 20 10	DC DC SINE WAVE STIVE OR INDUCTIVE LOAD. HOO Hz	Image: Structure of the structure of th
10 90 80 70 60 50 40 82 80 80 80 80 80 80 80 80 80 80 80 80 80	DC DC DC DC SINE WAVE STIVE OR INDUCTIVE LOAD. HOO HZ .8 1.2 1.6 2.0 2.4 2.8 3.2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
10 00 90 80 70 60 50 HALF RESIS 30 20 10 0 .4	DC DC DC DC DC DC DC DC DC DC DC DC DC D	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Figure 5. Typical Gate Trigger Voltage versus Junction Temperature

Figure 6. Typical Latching Current versus Junction Temperature

PACKAGE INTERCHANGEABILITY

The dimensional diagrams below compare the critical dimensions of the Littelfuse C-106 package with competitive devices. It has been demonstrated that the smaller dimensions of the Littelfuse package make it compatible in most lead-mount and chassis-mount applications. The user is advised to compare all critical dimensions for mounting compatibility.

Littelfuse C-106 Package

Competitive C-106 Package

ORDERING INFORMATION

Device	Package	Shipping [†]
C106BG	TO-225AA (Pb-Free)	500 Units / Box
C106DG	TO-225AA (Pb-Free)	500 Units / Box
C106D1G*	TO-225AA (Pb-Free)	500 Units / Box
C106MG	TO-225AA (Pb-Free)	500 Units / Box
C106M1G*	TO-225AA (Pb-Free)	500 Units / Box

*D1 signifies European equivalent for D suffix and M1 signifies European equivalent for M suffix.

PACKAGE DIMENSIONS

TO-225 CASE 77-09 ISSUE Z

077-01 THRU -08 OBSOLETE, NEW STANI 077-09.					
	INCHES MIN MAX		INCHES MILLIMETERS		IETERS
DIM			MIN MAX		
Α	0.425	0.435	10.80	11.04	
В	0.295	0.305	7.50	7.74	
c	0.095	0.105	2.42	2.66	
D	0.020	0.026	0.51	0.66	
F	0.115	0.130	2.93	3.30	
G	0.094 BSC		2.39 BSC		
Η	0.050	0.095	1.27	2.41	
J	0.015	0.025	0.39	0.63	
Κ	0.575	0.655	14.61	16.63	
Μ	5°	ТҮР	5 ° TYP		
Ø	0.148	0.158	3.76	4.01	
R	0.045	0.065	1.15	1.65	
S	0.025	0.035	0.64	0.88	
U	0.145	0.155	3.69	3.93	
٧	0.040		1.02		

1. DIMENSIONING AND TOLERANCING PER ANSI

STYLE 2: PIN 1. CATHODE 2. ANODE 3. GATE

NOTES:

Y14 5M 1982

Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, life-saving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse.

Littelfuse.com