

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

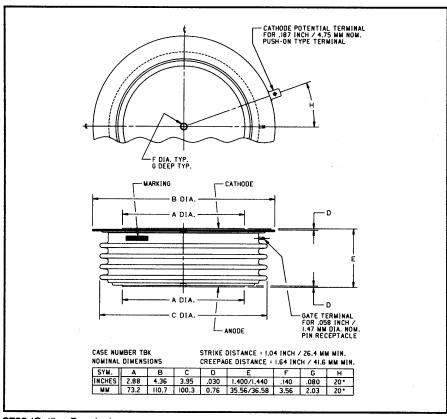
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

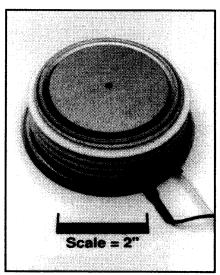
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





Powerex, Inc., 200 Hillis Street, Youngwood, Pennsylvania 15697-1800 (412) 925-7272 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14

Phase Control SCR 2300 Amperes Average 2500 Volts

C782 Phase Control SCR 2300 Amperes Average, 2500 Volts

C782 (Outline Drawing)

Ordering Information:

Select the complete six digit part number you desire from the table, i.e. C782LE is a 2500 Volt, 2300 Ampere Phase Control SCR.

	Volt	Current	
Туре	V _{DRM} V _{RRM}	Code	I _{T(av)}
C782	2200	LB	2300
	2300	LC	ŀ
	2400	LD	ŀ
	2500	LE	

Description:

Powerex Silicon Controlled Rectifiers (SCR) are designed for phase control applications. These are all-diffused, Press-Pak, hermetic Pow-R-Disc devices employing the field proven amplifying gate.

Features:

- ☐ Low On-State Voltage
- ☐ High di/dt Capability
- ☐ High dv/dt Capability☐ Hermetic Packaging
- Excellent Surge and I²t
 Ratings

Applications:

- ☐ Power Supplies

Powerex, Inc., 200 Hillis Street, Youngwood, Pennsylvania 15697-1800 (412) 925-7272 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14

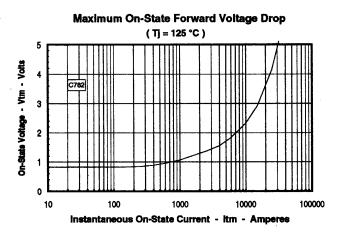
C782 Phase Control SCR 2300 Amperes Average, 2500 Volts

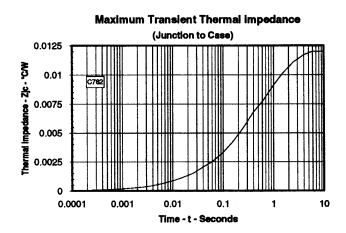
Absolute Maximum Ratings

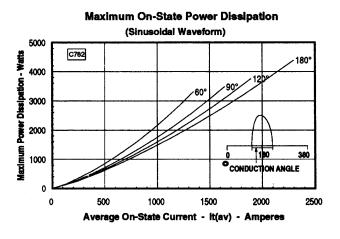
Characteristics	Symbol	C782	Units Volts	
Non-repetitive Transient Peak Reverse Voltage	V _{RSM}	V _{RRM} + 100V		
RMS On-state Current, T _C = 70°C	l _{T(rms)}	3610	Amperes	
Average Current 180° Sine Wave, T _C = 70°C	I _{T(av)}	2300	Amperes	
RMS On-state Current, T _C = 55°C	l _{T(rms)}	4240	Amperes	
Average Current 180° Sine Wave, T _C = 55°C	I _{T(av)}	2700	Amperes	
Peak One Cycle Surge On-state Current (Non-repetitive) 60Hz	l _{tsm}	35000	Amperes	
Peak One Cycle Surge On-state Current (Non-repetitive) 50Hz	l _{tsm}	32000	Amperes	
Critical Rate-of-rise of On-state Current (Non-repetitive)	di/dt	600	A/μsec	
Critical Rate-of-rise of On-state Current (Repetitive)	di/dt	100	A/μsec	
I ² t (for Fusing) for One Cycle, 60Hz	l ² t	5 x 10 ⁶	A ² sec	
Peak Gate Power Dissipation	P _{GM}	250	Watts	
Average Gate Power Dissipation	P _{G(av)}	35	Watts	
Operating Temperature	T _i	-40 to +125°C	°C	
Storage Temperature	T _{stg}	-40 to +150°C	°C	
Approximate Weight		3.5	lb.	
		1.60	kg	
Mounting Force		9000 to 10000	lb.	
		40 to 44.5	kN	

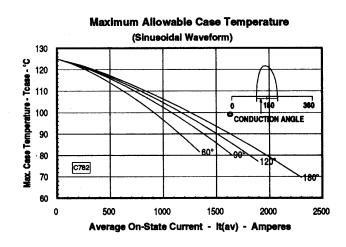
Powerex, Inc., 200 Hillis Street, Youngwood, Pennsylvania 15697-1800 (412) 925-7272 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14

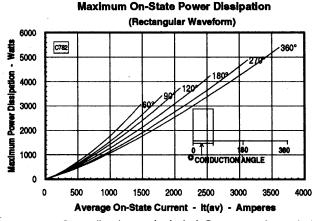
C782
Phase Control SCR
2300 Amperes Average, 2500 Volts

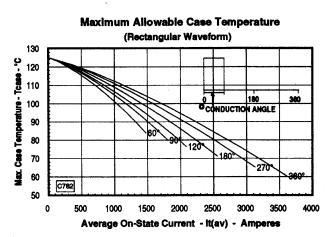

Electrical Characteristics, $T_j = 25^{\circ}C$ Unless Otherwise Specified


Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Repetitive Peak Reverse Leakage Current	IRRM	T _i = 125°C, V _R = V _{RRM}			150	mA
Repetitive Peak Forward Leakage Current	IDRM	T _j = 125°C, V _D = V _{DRM}			150	mA
Peak On-state Voltage	V _{TM}	T _i = 125°C, I _T = 2000A Peak			1.35	Volts
		Duty Cycle < 0.1%				
Threshold Voltage, Low-level	V _{(TO)1}	$T_i = 125^{\circ}C$, $I = 15\%$, $I_{T(av)}$ to $\pi I_{T(av)}$			0.86799	Volts
Slope Resistance, Low-level	r _{T1}	,			0.1703	mΩ
Threshold Voltage, High-level	V _{(TO)2}	$T_j = 125$ °C, $I = \pi I_{T(av)}$ to I_{TSM}			1.0951	Volts
Slope Resistance, High-level	^r T2				0.1226	mΩ
V _{TM} Coefficients, Low-level		$T_j = 125$ °C, $I = 15\% I_{T(av)}$ to $\pi I_{T(av)}$				
		, , , , ,			A ₁ = 0.6045	52
				Ε	$3_1 = 0.0034$	804
				C	$C_1 = 3.235E$	E-05
				Ε	$0_1 = 0.0129$	93
V _{TM} Coefficients, High-level		$T_j = 125^{\circ}C$, $I = \pi I_{T(av)}$ to I_{TSM}				
					$\lambda_2 = 2.2748$	
					3 ₂ = -0.1701	
					$C_2 = 1.155E$	
					$0_2 = 0.0045$	534
Typical Delay Time	^t d	T _j = 125°C, V _D = 1800V		3		μsec
Typical Turn-off Time	^t q	$T_j = 125$ °C, $I_T = 2000$ A,		250		μsec
		$tp > 2msec, di_{R}/dt = 5A/\mu sec$				
		V Reapplied = 1500V,				
		dv/dt = 1000V/μsec, V _R = 100V				
Minimum Critical dv/dt - Exponential to V _{DRM}	dv/dt	$T_j = 125^{\circ}C, V_D = 0.8 V_{DRM}$	500			V/µsec
Gate Trigger Current	^l GT	$T_j = 25^{\circ}C, V_D = 12V_{DC}$			250	mA
Gate Trigger Voltage	V _{GT}	$T_j = 25^{\circ}C, V_D = 12V_{DC}$			4.5	Volts
Non-Triggering Gate Voltage	V _{GDM}	$T_j = 125$ °C, $V_D = 1300$ V			0.5	Volts
Peak Forward Gate Current	^I GTM				20	Α
Peak Reverse Gate Voltage	V _{GRM}				20	Volts
Thermal Characteristics						
Maximum Thermal Resistance, Double Sided Co	oling					
Junction-to-Case	R _{θ(j-c)}				0.012	°C/W
Case-to-Sink	R _{θ(c-s)}				0.002	°C/W
	<u> </u>					




Powerex, Inc., 200 Hillis Street, Youngwood, Pennsylvania 15697-1800 (412) 925-7272 Powerex, Europe, S.A. 428 Avenue G. Durand, BP107, 72003 Le Mans, France (43) 41.14.14


C782
Phase Control SCR
2300 Amperes Average, 2500 Volts



Note: Spreading losses included. Curves are for an inductive load.