## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## 

## CBT6810

10-bit bus switch with precharged outputs and Schottky undershoot protection for live insertion

Product data<br>Supersedes data of 2000 Jun 19

## 10-bit bus switch with precharged outputs and Schottky undershoot protection for live insertion

## FEATURES

- $5 \Omega$ switch connection between port A and port B
- TTL compatible input and output levels
- Undershoot protection included to prevent shoot through level changes
- Bias voltage pre-charges the outputs to minimize signal distortion during live insertion
- Latch-up protection exceeds 500 mA per JESD78
- ESD protection exceeds 2000 V HBM per JESD22-A114, 200 V MM per JESD22-A115 and 1000 V CDM per JESD22-C101


## DESCRIPTION

The CBT6810 provides ten bits of high-speed TTL-compatible bus switching. The low on-state resistance of the switch allows bi-directional connections to be made while adding near-zero propagation delay. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.

The CBT6810 is organized as one 10-bit switch with a single enable $(\overline{O E})$ input. When $\overline{O E}$ is low, the switch is on and port $A$ is connected to port B . When $\overline{\mathrm{OE}}$ is high, the switch between port A and port $B$ is open and the $B$ port is precharged to BIASV through the equivalent of a $10-\mathrm{k} \Omega$ resistor.
The CBT6810 is characterized for operation from -40 to $+85^{\circ} \mathrm{C}$.

## QUICK REFERENCE DATA

| SYMBOL | PARAMETER | CONDITIONS <br> $\mathbf{T a m b}^{\prime}=\mathbf{2 5} \mathbf{C} ; \mathbf{G N D}=\mathbf{0} \mathbf{V}$ | TYPICAL | UNIT |
| :---: | :--- | :--- | :---: | :---: |
| tpLH <br> $\mathrm{t}_{\mathrm{PHL}}$ | Propagation delay <br> An to Bn or Bn to An | $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ | 250 | ps |
| $\mathrm{C}_{\mathrm{IN}}$ | Input capacitance | $\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}$ | 3.5 | pF |
| $\mathrm{C}_{\mathrm{IO}}$ | Input/output capacitance | Outputs disabled; $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{CC}}$ | 9.0 | pF |

## ORDERING INFORMATION

| PACKAGES | TEMPERATURE RANGE | ORDER CODE | DWG NUMBER |
| :--- | :---: | :---: | :---: |
| 24-Pin Plastic TSSOP | -40 to $+85^{\circ} \mathrm{C}$ | CBT6810PW | SOT355-1 |
| 24-Pin Plastic SSOP (QSOP) | -40 to $+85^{\circ} \mathrm{C}$ | CBT6810DK | SOT556-1 |

## PIN CONFIGURATION



## PIN DESCRIPTION

| PIN NUMBER | SYMBOL | NAME AND FUNCTION |
| :---: | :---: | :--- |
| 1 | OE | Output enable |
| 13 | BIASV | Precharge bias voltage input |
| $2,3,4,5,6$, <br> $7,8,9,10,11$ | A1-A10 | A - port side |
| $23,22,21,20,19$, <br> $18,17,16,15,14$ | B1-B10 | B - port side with active pullup |
| 12 | GND | Ground (V) |
| 24 | V $_{\text {CC }}$ | Positive supply voltagem |

LOGIC SYMBOL


FUNCTION TABLE

| OE | STATE |
| :---: | :---: |
| L | A port $=$ B port |
| H | A port $=$ Z |
| H | B port $=$ BIASV |

$\mathrm{H}=$ High voltage level
$\mathrm{L}=$ Low voltage level
Z $=$ High impedance "off" state

## ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

| SYMBOL | PARAMETER | CONDITIONS | RATING | UNIT |
| :---: | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{CC}}$ | DC supply voltage |  | -0.5 to +7.0 | V |
| $\mathrm{I}_{\mathrm{IK}}$ | DC clamp diode current |  | -50 | mA |
| $\mathrm{~V}_{\mathrm{I}}$ | DC input voltage ${ }^{3}$ |  | -0.5 to +7.0 | V |
| $\mathrm{I}_{\mathrm{SW}}$ | DC continuous channel current | $\pm 128$ | mA |  |
| $\mathrm{~T}_{\text {stg }}$ | Storage temperature range |  | -65 to 150 | ${ }^{\circ} \mathrm{C}$ |
| BIASV | DC Bias voltage range | -0.5 to 7.0 | V |  |
| $\Theta_{\mathrm{JA}}$ | Power dissipation per package <br> Plastic thin shrink small outline package |  | 134 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

## NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

## RECOMMENDED OPERATING CONDITIONS

| SYMBOL | PARAMETER |  | LIMITS |  |
| :---: | :--- | :---: | :---: | :---: |
|  |  | Min | Max |  |
| $\mathrm{V}_{\mathrm{CC}}$ | DC supply voltage | 4.0 | 5.5 | V |
| BIASV | DC supply voltage | 1.3 | $\mathrm{~V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage (control pin) | 2.0 | - | V |
| $\mathrm{V}_{\mathrm{IL}}$ | Low-level Input voltage (control pin) | - | 0.8 | V |
| $\mathrm{~T}_{\mathrm{amb}}$ | Operating free-air temperature range | -40 | +85 | ${ }^{\circ} \mathrm{C}$ |

## DC ELECTRICAL CHARACTERISTICS

| SYMBOL | PARAMETER | TEST CONDITIONS | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{T}_{\text {amb }}=-40$ to $+85{ }^{\circ} \mathrm{C}$ |  |  |  |
|  |  |  | Min | Typ ${ }^{1}$ | Max |  |
| $\mathrm{V}_{\mathrm{IK}}$ | Input clamp voltage | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{I}}=-18 \mathrm{~mA}$ | - | - | -1.2 | V |
| 1 | Input leakage current (control pin) | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or 5.5 V | - | - | $\pm 5$ | $\mu \mathrm{A}$ |
| lo | Output bias current (B pins) | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \text { Bias } \mathrm{V}=2.4 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0, \\ & \mathrm{OE}=\mathrm{V}_{\mathrm{CC}} \end{aligned}$ | - | - | -0.25 | mA |
| $\mathrm{I}_{\mathrm{CC}}$ | Quiescent supply current | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{l}_{\mathrm{O}}=0, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND | - | - | 2.5 | mA |
| $\Delta_{\text {l }}$ | Control pins ${ }^{2}$ | $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, one input at 3.4 V , other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND | - | - | 2.5 | mA |
| $\mathrm{Cl}_{1}$ | Control pins | $\mathrm{V}_{1}=3 \mathrm{~V}$ or 0 | - | 3.5 | - | pF |
| $\mathrm{C}_{\text {O(OFF) }}$ | Terminal capacitance | $\mathrm{V}_{\mathrm{O}}=3 \mathrm{~V}$ or 0; switch off | - | 9.0 | - | pF |
| $\mathrm{ron}^{3}$ | On-resistance | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=64 \mathrm{~mA}$ | - | 5 | 7 | $\Omega$ |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=30 \mathrm{~mA}$ | - | 5 | 7 |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V} ; \mathrm{I}_{\mathrm{I}}=-15 \mathrm{~mA}$ | - | 10 | 15 |  |
| $\mathrm{V}_{\mathrm{P}}$ | Pass voltage | $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{I}_{\text {out }}=-100 \mu \mathrm{~A}$ | 3.4 | 3.6 | 3.9 | V |
| lusp ${ }^{4}$ | Undershoot static current protection | $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \text { BiasV }=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{B}}=-5 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{B}} \geq 3 \mathrm{~V} \end{aligned}$ | - | -10 | - | mA |

## NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
2. This is the increase in supply current for each input that is at the specified TTL voltage level rather than $\mathrm{V}_{C C}$ or GND
3. Measured by the voltage drop between the $A$ and the $B$ terminals at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two ( A or B ) terminals.
4. Force lusp, measure $\mathrm{V}_{\mathrm{B}} \geq 3 \mathrm{~V}$

## 10-bit bus switch with precharged outputs and Schottky undershoot protection for live insertion

AC CHARACTERISTICS FOR $\mathrm{V}_{\mathrm{CC}}=5.0 \pm 0.5 \mathrm{~V}$ RANGE
GND $=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$.

| SYMBOL | PARAMETER | WAVEFORM | LIMITS |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{T}_{\text {amb }}=-40$ to $+85^{\circ} \mathrm{C}$ |  |  |  |
|  |  |  | MIN | TYP ${ }^{1}$ | MAX |  |
| $\mathrm{t}_{\mathrm{pd}}$ | Propagation delay An to Bn ; Bn to $\mathrm{An}^{2}$ | 1 |  |  | 0.25 | ns |
| tpzH | 3-State output enable time OE to An; OE to Bn; BIASV = GND | 2 | 1.8 | 3.5 | 5.3 | ns |
| $t_{\text {PZL }}$ | 3-State output enable time OE to An; OE to Bn; BIASV $=3.0 \mathrm{~V}$ | 2 | 2.1 | 4.2 | 7.2 | ns |
| $t_{\text {PHZ }}$ | 3-State output enable time OE to $\mathrm{An} ; \mathrm{OE}$ to $\mathrm{Bn} ; \mathrm{BIASV}=\mathrm{GND}$ | 2 | 1.7 | 3.7 | 6.1 | ns |
| tplz | 3-State output enable time $\overline{\mathrm{OE}}$ to $\mathrm{An} ; \mathrm{OE}$ to $\mathrm{Bn} ; \mathrm{BIASV}=3.0 \mathrm{~V}$ | 2 | 1.0 | 5.5 | 7.3 | ns |

## NOTE:

1. All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
2. Warranted but not production tested. The propagation delay is based on the RC time constant of the typical ON-state resistance of the switch and a load capacitance of 50 pF , when driven by an ideal voltage source (zero output impedance)

## AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}$ to 3.0 V


Waveform 1. Waveforms Showing the Input (An) to Output (Yn) Propagation Delays


Waveform 2. Waveforms Showing the 3-State Output Enable
and Disable Times

## TEST CIRCUIT AND WAVEFORMS



## NOTES:

1. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
2. The outputs are measured one at a time with one transition per measurement.

## 10-bit bus switch with precharged outputs

 and Schottky undershoot protection for live insertion

detail X


DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ <br> max. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | $\mathbf{c}$ | $\mathbf{D}^{(1)}$ | $\mathbf{E}^{(2)}$ | $\mathbf{e}$ | $\mathbf{H}_{\mathbf{E}}$ | $\mathbf{L}$ | $\mathbf{L}_{\mathbf{p}}$ | $\mathbf{Q}$ | $\mathbf{v}$ | $\mathbf{w}$ | $\mathbf{y}$ | $\mathbf{Z}^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.10 | 0.15 | 0.95 | 0.25 | 0.30 | 0.2 | 7.9 | 4.5 | 0.65 | 6.6 | 1.0 | 0.75 | 0.4 | 0.2 | 0.13 | 0.1 | 0.5 | $8^{0}$ |
| 0.2 | 0.80 | 0.25 | 0.19 | 0.1 | 7.7 | 4.3 | 0.65 | 6.2 | 1.0 | 0.50 | 0.3 | 0.2 |  |  |  |  |  |  |

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included

| OUTLINE <br> VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT355-1 |  | MO-153 |  | - | $\begin{aligned} & -95-02-04 \\ & 99-12-27 \end{aligned}$ |

## 10-bit bus switch with precharged outputs and Schottky undershoot protection for live insertion



DIMENSIONS (millimetre dimensions are derived from the original inch dimensions)

| UNIT | $\underset{\max .}{A}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathbf{b}_{\mathbf{p}}$ | c | $D^{(1)}$ | $E^{(1)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $L_{p}$ | v | w | y | $Z^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.73 | $\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$ | $\begin{aligned} & \hline 1.55 \\ & 1.40 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.31 \\ & 0.20 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 0.18 \end{aligned}$ | $\begin{aligned} & 8.8 \\ & 8.6 \end{aligned}$ | $\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$ | 0.635 | $\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$ | 1.0 | $\begin{aligned} & 0.89 \\ & 0.41 \end{aligned}$ | 0.25 | 0.18 | 0.1 | $\begin{aligned} & 1.05 \\ & 0.66 \end{aligned}$ | $8^{0}$ $0^{0}$ |
| inches | 0.068 | $\left.\begin{array}{\|l\|} 0.0098 \\ 0.0040 \end{array} \right\rvert\,$ | $\begin{aligned} & 0.061 \\ & 0.055 \end{aligned}$ | 0.010 | $\begin{aligned} & 0.012 \\ & 0.008 \end{aligned}$ | $\begin{aligned} & 0.0098 \\ & 0.0075 \end{aligned}$ | $\begin{aligned} & 0.344 \\ & 0.337 \end{aligned}$ | $\begin{aligned} & 0.157 \\ & 0.150 \end{aligned}$ | 0.025 | $\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$ | 0.041 | $\begin{aligned} & 0.035 \\ & 0.016 \end{aligned}$ | 0.010 | 0.007 | 0.004 | $\begin{aligned} & 0.040 \\ & 0.026 \end{aligned}$ | $\begin{aligned} & 8^{0} \\ & 0^{\circ} \end{aligned}$ |

Note

1. Plastic or metal protrusions of 0.20 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  |  | EUROPEAN <br> PROJECTION |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |  |
| SOT556-1 |  | MO-137 |  |  |  |  |

## 10-bit bus switch with precharged outputs and Schottky undershoot protection for live insertion

REVISION HISTORY

| Rev | Date | Description |
| :--- | :--- | :--- |
| -3 | 20021213 | Product data (9397 750 10871); ECN 853-2151 29159 of 06 November 2002. <br> Modifications: <br> • New package release. |
| -2 | 20000619 | Product data (9397 750 07214); ECN 853-2151 23905 of 19 June 2000. |

## Data sheet status

| Level | Data sheet status ${ }^{[1]}$ | Product status ${ }^{[2]}$ [3] | Definitions |
| :---: | :---: | :---: | :---: |
| I | Objective data | Development | This data sheet contains data from the objective specification for product development. Philips Semiconductors reserves the right to change the specification in any manner without notice. |
| II | Preliminary data | Qualification | This data sheet contains data from the preliminary specification. Supplementary data will be published at a later date. Philips Semiconductors reserves the right to change the specification without notice, in order to improve the design and supply the best possible product. |
| III | Product data | Production | This data sheet contains data from the product specification. Philips Semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. Relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). |

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

## Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

## Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes in the products-including circuits, standard cells, and/or software-described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

## Contact information

© Koninklijke Philips Electronics N.V. 2002
For additional information please visit
http://www.semiconductors.philips.com. Fax: +31 402724825
All rights reserved. Printed in U.S.A.

For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com.

