imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

DATA SHEET SURFACE MOUNT MULTILAYER

General purpose & High capacitance Class 2, X5R

4 V TO 50 V

100 pF to 220 μF RoHS compliant & Halogen free

YAGEO Phícomp

2

Surface Mount Multilayer Ceramic Capacitors General Purpose & High Cap. XSR 4 V to 50 V

SCOPE

This specification describes X5R series chip capacitors with leadfree terminations.

APPLICATIONS

PCs, Hard disk, Game PCs **Power supplies DVD** players Mobile phones Data processing

FEATURES

Supplied in tape on reel Nickel-barrier end termination **RoHS** compliant Halogen free compliant

ORDERING INFORMATION - GLOBAL PART NUMBER, PHYCOMP

(5)

CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value. YAGEO BRAND ordering code

GLOBAL PART NUMBER (PREFERRED)

CC <u>xxxx x x</u> X5R <u>x</u> BB <u>xxx</u>

(1) (2) (3) (4)

(I) SIZE – INCH BASED (METRIC)

0201	(0603)
0402	(1005)
0603	(1608)
0805	(2012)
1206	(3216)
1210	(3225)

(2) TOLERANCE

 $K = \pm 10\%$

$M = \pm 20\%$

(3) PACKING STYLE

- R = Paper/PE taping reel; Reel 7 inch
- K = Blister taping reel; Reel 7 inch
- P = Paper/PE taping reel; Reel 13 inch
- F = Blister taping reel; Reel 13 inch
- C = Bulk case

(4) RATED VOLTAGE

4	=	4 V
5	=	6.3 V
6	=	10 V
7	=	16 V

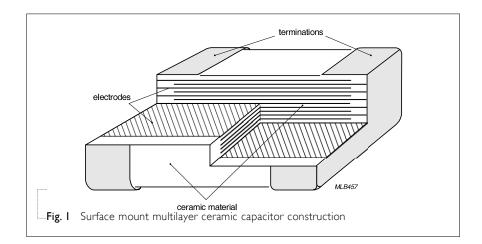
- 8 = 25 V
- $9 = 50 \vee$

(5) CAPACITANCE VALUE

2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point

Example: $103 = 10 \times 10^3 = 10,000 \text{ pF} = 10 \text{ nF}$

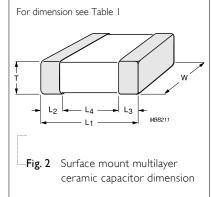


Surface Mount Multilayer Ceramic Capacitors General Purpose & High Cap. XSR 4 V to 50 V

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.

The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. I.



DIMENSION

 Table I
 For outlines see fig. 2

ТҮРЕ	L _I (mm)	W (mm)	T (MM)	L ₂ / L ₃	, (mm)	L ₄ (mm)	DIMENSION
				min.	max.	min.	CODE
	0.6 ±0.03	0.3 ±0.03	0.3 ±0.03	0.1	0.2	0.2	BA
0201	0.6 ±0.05	0.3 ±0.05	0.3 ±0.05	0.1	0.2	0.2	BB
0201	0.6 ±0.09	0.3 ±0.09	0.3 ±0.09	0.1	0.25	0.2	BC
	0.6 ±0.15	0.3 ±0.15	0.3 ±0.15	0.1	0.25	0.2	BD
	1.0 ±0.05	0.5 ±0.05	0.5 ±0.05	0.15	0.35	0.4	CA
0402	1.0 ±0.10	0.5 ±0.10	0.5 ±0.10	0.15	0.35	0.4	СВ
	1.0 ±0.15	0.5 ±0.15	0.5 ±0.15	0.15	0.35	0.4	CC
	1.0 ±0.20	0.5 ±0.20	0.5 ±0.20	0.15	0.35	0.4	CD
	1.6 ±0.10	0.8 ±0.10	0.8 ±0.10	0.2	0.6	0.4	DA
0603	1.6 ±0.15	0.8 ±0.15	0.8 ±0.15	0.2	0.6	0.4	DB
	1.6 ±0.20	0.8 ±0.20	0.8 ±0.20	0.2	0.6	0.4	DC
0805	2.0 ±0.20	1.25 ±0.20	0.85 ±0.10	0.25	0.75	0.7	EA
0803	2.0 ±0.20	1.25 ±0.20	1.25 ±0.20	0.25	0.75	0.7	EB
	3.2 ±0.15	1.6 ±0.15	1.15 ±0.10	0.25	0.75	1.4	FA
1206	3.2 ±0.30	1.6 ±0.20	1.25 ±0.20	0.25	0.75	1.4	FB
1200	3.2 ±0.30	1.6 ±0.30	1.60 ±0.20	0.25	0.80	1.4	FC
	3.2 ±0.30	1.6 ±0.30	1.60 ±0.30	0.30	0.90	1.4	FD
	3.2 ±0.40	2.5 ±0.30	1.25 ±0.20	0.25	0.75	1.4	GA
1210	3.2 ±0.40	2.5 ±0.30	1.90 ±0.20	0.25	0.75	1.4	GB
1210	3.2 ±0.40	2.5 ±0.30	2.5 ±0.20	0.25	0.75	1.0	GC
	3.2 ±0.40	2.5 ±0.30	2.5 ±0.30	0.25	0.75	1.0	GD

OUTLINES

 $\frac{\text{Product specification}}{18}$

Surface Mount Multilayer Ceramic Capacitors General Purpose & High Cap. XSR 4 V to 50 V

CAPACITANCE RANGE & THICKNESS FOR X5R

Table 2 CAP.	Sizes fro 0201	m 0201 to	0402				0402					
C/ (I .	4 V	6.3 V	10 V	16 V	25 V	50 V	4 V	6.3 V	10 V	16 V	25 V	50 V
100 pF		BA	BA	BA	BA	BA						
150 pF		BA	BA	BA	BA	BA						
220 pF		BA	BA	BA	BA	BA						
330 pF		BA	BA	BA	BA	BA						
470 pF		BA	BA	BA	BA	BA						
680 pF		BA	BA	BA	BA	BA						
I.0 nF		BA	BA	BA	BA	BA						
I.5 nF		BA	BA	BA	BA							
2.2 nF		BA	BA	BA	BA							
3.3 nF		BA	BA	BA	BA							
4.7 nF		BA	BA	BA	BA							
6.8 nF		BA	BA	BA	BA							
10 nF		BA	BA	BA	BA							
I5 nF		BA	BA	BA								
22 nF		BA	BA	BA	BA			CA	CA	CA	CA	CA
33 nF		BA	BA	BA				CA	CA	CA	CA	CA
47 nF		BA	BA	BA				CA	CA	CA	CA	CA
68 nF		BA	BA	BA				CA	CA	CA	CA	CA
100 nF		BA	BA	BA	BB			CA	CA	CA	CA	CA
150 nF								CA	CA	CA	CA	CA
220 nF	BA	BA	BA	BA				CA	CA	CA	CA	CA
330 nF								CA	CA			
470 nF	BA	BA	BA	BA				CA	CA	СВ	СВ	СВ
680 nF								CA	CA			
Ι.Ο μF	BB	BB	BB					CA	CA	CA	CA	
2.2 µF	BC	BC	BC					CA	CA	CC	CD	
4.7 µF	BD						CC	CC	CC	CC		
ΙΟ μF							CD	CD	CD			
22 µF							CD	CD				

NOTE

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-6 series is available on request

YAGEO	Phícomp			Product specification	5
	Surface Mount Multilayer Ceramic Capacitors	General Purpose & High Cap.	X5R	4 V to 50 V	18

Table 3	Sizes fror	<u>vange &</u> n 0603 to (1299 1 61	<u>a Mana</u>		0805					
CAP.	0603 4V	6.3 V	10 V	16 V	25 V	50V	4V	6.3 V	10 V	16 V	25 V	50V
10 nF												
15 nF												
22 nF												
33 nF												
47nF												
68 nF												
100 nF												
I 50 nF												
220 nF		DA	DA	DA	DA	DA						
330 nF		DA	DA	DA	DA	DA						
470 nF		DA	DA	DA	DA	DA		EA EB	EA EB	EA EB	EB	EB
680 nF		DA	DA	DA	DA	DA		EA EB	EA EB	EA EB	EB	EB
Ι.0 μF		DA	DA	DA	DA	DA		EA EB	EA EB	EA EB	EB	EB
2.2 µF		DA	DA	DA	DB	DC		EA EB	EA EB	EA EB	EA EB	EB
4.7 µF		DA	DA	DB	DB			EA EB	EA EB	EB	EB	EB
IO μF		DB	DC	DC	DC			EA EB	EA EB	EB	EB	EB
22 µF		DC	DC					EB	EB	EB	EB	
47 µF	DC	DC						EB	EB			
100 µF							EB	EB				

CAPACITANCE RANGE & THICKNESS FOR X5R

ΝΟΤΕ

- I. Values in shaded cells indicate thickness class in mm
- 2. Capacitance value of non E-6 series is available on request

YAGEO	Phíco	mp								Product specificati	
	Surface	e Mount Mi	ultilaye	r Cerami	c Capaci	tors	General Purpo	ose & High (Cap. X5R	4 V to 50 V	18
T -1-1-4	C' fra 1'	20/ +- 1210									
CAP.	Sizes from 13	206 10 1210					1210				
	4 V	6.3 V	10 V	16 V	25 V	50V	6.3 V	10 V	16 V	25 V	50V
I0 nF											
I5 nF											
22 nF											
33 nF											
47nF											
68 nF											
100 nF											
150 nF											
220 nF											
330 nF											
470 nF											
680 nF											
Ι.0 μF		FA	FA	FA	FA	FC	GA	GA	GA	GA	GA
2.2 µF		FA	FA	FA	FA	FC	GB	GB	GB	GB	GB
4.7 µF		FC	FC	FC	FC	FC	GB	GB	GB	GB	GC
ΙΟ μF		FC	FC	FC	FC	FD	GB	GB	GB	GB	GC
22 µF		FC	FC	FC	FD		GC	GC	GC	GD	
47 μF		FC	FC	FD			GC	GC	GC		
100 µF		FD					GD	GD	GD		
220 µF	FD						GD				
1											

ΝΟΤΕ

1. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-6 series is available on request

Surface Mount Multilayer Ceramic Capacitors General Purpose & High Cap. X5R 4 V to 50 V

THICKNESS CLASSES AND PACKING QUANTITY

Table 5							
SIZE	THICKNESS	TAPE WIDTH -	Ø180 MM	/ 7 INCH	Ø330 MM	/ 13 INCH	QUANTITY
CODE	CLASSIFICATION	QUANTITY PER REEL	Paper	Blister	Paper	Blister	PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 / 0.1 mm	8 mm	10,000		50,000		50,000
0402	0.5 ±0.15 / 0.2 mm	8 mm	10,000		40,000		
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		
	0.85 ±0.1 mm	8 mm	4,000		15,000		
1206 -	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
1200	1.25 ±0.2 mm	8 mm		3,000		10,000	
	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		8,000	
	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
	0.85 ±0.1 mm	8 mm		4,000		10,000	
	1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.15 mm	8 mm		3,000		10,000	
	1.25 ±0.2 mm	8 mm		3,000			
1210	1.5 ±0.1 mm	8 mm		2,000			
	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000 1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			

Surface Mount Multilayer Ceramic Capacitors General Purpose & High Cap. XSR 4 V to 50 V

ELECTRICAL CHARACTERISTICS

X5R DIELECTRIC CAPACITORS; NISN TERMINATIONS

Unless otherwise specified, all tests and measurements shall be made under standard atmospheric conditions for testing as given in 5.3 of IEC 60068-1:

- Temperature: 15 °C to 35 °C
- Relative humidity: 25% to 75%
- Air pressure: 86 kPa to 106 kPa

Before the measurements are made, the capacitor shall be stored at the measuring temperature for a time sufficient to allow the entire capacitor to reach this temperature.

The period as prescribed for recovery at the end of a test is normally sufficient for this purpose.

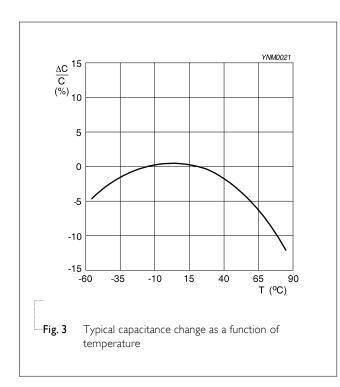
Capacitan	ice range					100 pF	to 220 µF
Capacitan	ice tolerance					±10% a	and ±20%
Dissipatio	n factor (D.F.)						
X5R	0201	0402	0603	0805	1206	1210	D.F
≤ 6.3V	100pF to 10nF	22nFto 100nF	220nFto luF	470nF to 680nF	luF to 10uF	luF to 10uF	≤ 5%
		I 20nF to 220nF				22uF	≤ 7%
	l2nF to luF	330nF to 10uF	2.2uF to 47uF	IuF to 100uF	22uF to 47uF	47uF to 220uF	$\leq 10\%$
	2.2uF				100uF, 220uF		≤15%
	4.7uF	22uF					≤ 20%
10V	100pF to 10nF	22nFto 100nF	220nF to 470nF	470nF to 680nF	luF to 4.7uF	l uF to 4.7uF	≤ 5%
		I 20nF to 220nF	680nF	luF			≤ 7%
	I 2nF to 220nF, I uF	330nF to 10uF	I uF to 22uF	2.2uF to 47uF	I0uF to 47uF	10uF to 100uF	$\leq 10\%$
	470nF						≤15%
	2.2uF						≤ 20%
16V	100pF to 10nF	22nFto 100nF	220nF to 470nF	470nF to 680nF	luF to 4.7uF	l uF to 4.7uF	≤ 5%
		I 20nF to 220nF	680nFto luF	l uF to 2.2 µ F			≤ 7%
	I 2nF to 220nF	470nF to 4.7uF	2.2uF to 10uF	4.7uF to 22uF	10uF to 47uF	10uF to 100uF	$\leq 10\%$
	470nF						≤ 20%
25V	100pF to 10nF	22nF		470nF to IuF	luF to 2.2uF	l uF to 4.7uF	≤ 3.5%
		27nFto 100nF	220nF to 470nF	2.2uF	4.7uF	l OuF	≤ 5%
		I 20nF to 220nF	680nFto luF				≤ 7%
	22nF, 100nF	470nF to 2.2uF	2.2uF to 10uF	4.7uF to 22uF	IOuF to 22uF	22uF	$\leq 10\%$
50V	100pF to 1nF	22nF					≤ 3.5%
		27nF to 120nF					≤ 5%
		I 50nF to 220nF					≤ 7%
		470nF	220nF to 2.2uF	470nF to 10uF	IuF to IOuF	luF to IOuF	$\leq 10\%$
Insulatior	n resistance after 1 min	ute at Ur (DC)	Ri	ns ≥ 10 GΩ or Rir	ıs × Cr ≥ 50/100/5	500* seconds which	ever is les
Maximum	capacitance change as a	function of tempe	erature				±15%

Product specification 9 18

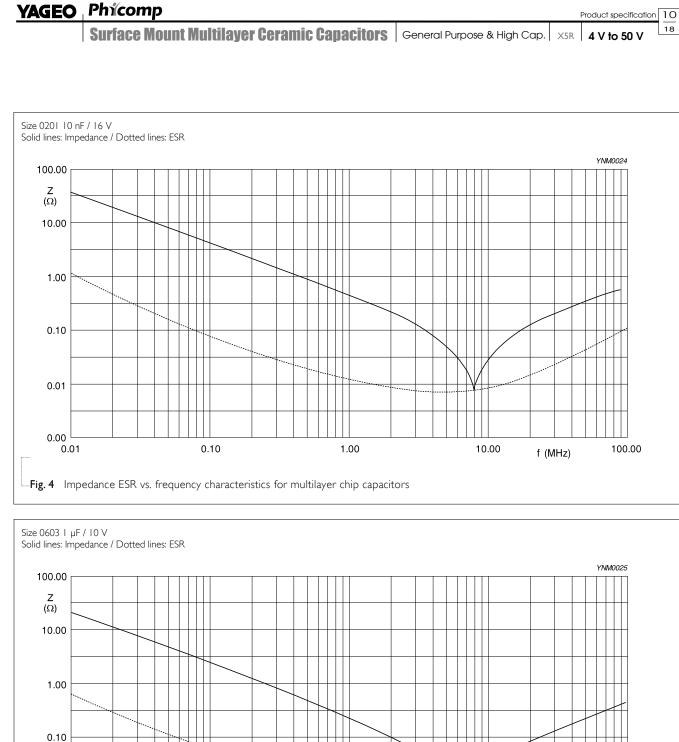
Surface Mount Multilayer Ceramic Capacitors General Purpose & High Cap. X5R 4 V to 50 V

NOTE

_


* Rins \geq 10 G Ω or Rins × Cr \geq 500 Ω .F:
0201 : 100pF to 47nF
0402 : 22nF to 470nF
0603 : 220nF to luF
0805:470 nF to 2.2uF, 4.7uF/6.3V to 16V
1206 : IuF to 2.2uF, 4.7uF/6.3V to 16V
1210 : 1uF to 2.2uF, 4.7uF/6.3V to 16V

* Rins × Cr ≥ 50Ω.F:
0201 : luF
0402 : IOuF
0603 : IOuF to 22uF
0805 : 10uF/50V, 47uF to 100uF
1206 : 100uF, 220uF


0402 : IuF to 4.7uF 0603 : 2.2uF to 4.7uF 0805 : 4.7uF/16V to 50V, 10uF to 22uF/4V to 25V 1206 : 4.7uF/25V to 50V, 10uF to 47uF 1210 : 47uF to 220uF

* Rins × Cr ≥ 20Ω.F: 0201 : 2.2uF to 4.7uF 0402 : 22uF 0603 : 47uF

* Rins × Cr \ge 100 Ω .F: 0201 : 100nF to 470nF

1.00

10.00

f (MHz)

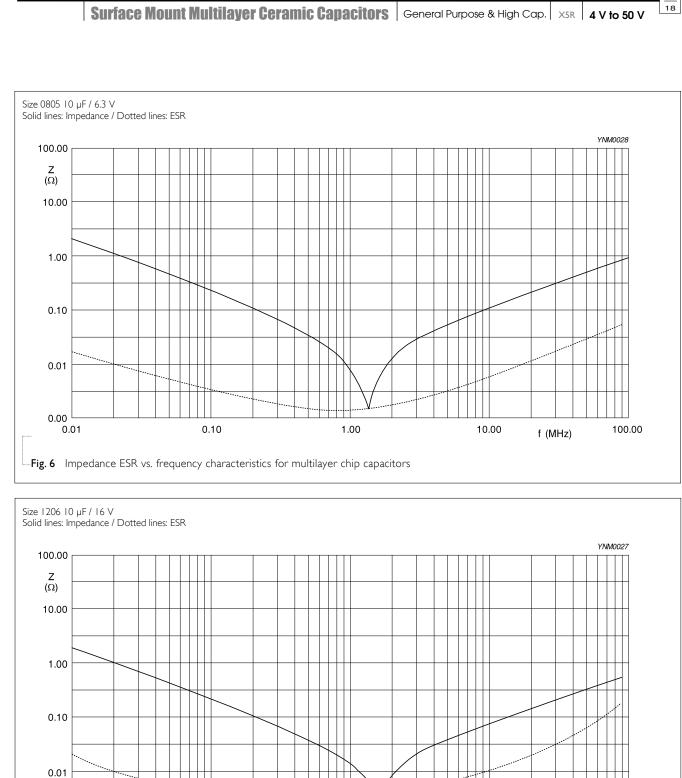

0.10

Fig. 5 Impedance ESR vs. frequency characteristics for multilayer chip capacitors

0.01

0.00 0.01

100.00

1.00

10.00

f (MHz)

0.00 L 0.01

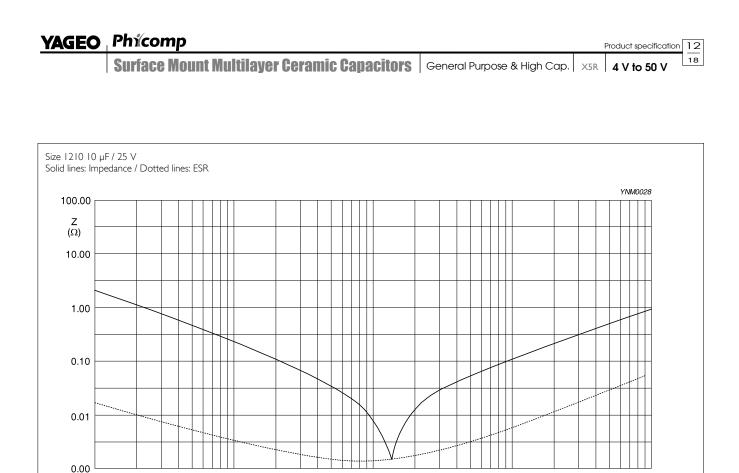

0.10

Fig. 7 Impedance ESR vs. frequency characteristics for multilayer chip capacitors

YAGEO Phicomp

100.00

Product specification 11

Fig. 8	Impedance ESR vs	s. frequency	/ characteristics	for	multilaye	r chip	capacitors

0.10

SOLDERING RECOMMENDATION

0.01

Table 7						
SOLDERING METHOD	SIZE 0201	0402	0603	0805	1206	≥ 2 0
Reflow	Reflow only	> 100 nF	> IµF	> 2.2 µF	> 2.2 µF	Reflow only
Reflow/Wave		≤ 100 nF	≤IµF	≤ 2.2 µF	≤ 2.2 µF	

1.00

10.00

f (MHz)

100.00

Product specification 13

Surface Mount Multilayer Ceramic Capacitors General Purpose & High Cap. XSR 4 V to 50 V

TESTS AND REQUIREMENTS

Table 8 Test	procedures a	ind req	uirements		
TEST TEST METHOD		HOD	PROCEDURE	REQUIREMENTS	
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage	
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification	
Capacitance ^(I)		4.5. I	Class 2:	Within specified tolerance	
Capacitatice (V)4.5.1Class 2.Dissipation Factor (D.F.) (I)4.5.2At 20 °C, 24 hrs after annealing Cap $\leq I \ \mu$ F, f = 1 KHz, measuring at voltage I Vrms at 20 °C Cap $> I \ \mu$ F, f = 1 KHz for C $\leq I0 \ \mu$ F, rated voltage $> 6.3 \ V$, measuring at voltage I Vrms at 20 °C f = 1 KHz, for C $\leq I0 \ \mu$ F, rated voltage $\leq 6.3 \ V$, measuring at voltage 0.5 Vrms at 20 °C f = 120 Hz for C $> I0 \ \mu$ F, measuring at voltage 0.5 Vrms at 20 °C					
Insulation Resistance		4.5.3	At U _r (DC) for I minute	In accordance with specification	

NOTE

I. The figure indicates typical inspection. Please refer to individual specifications.

Product specification $\frac{14}{18}$

	TEST METH		PROCEDURE	REQUIREMENTS		
Temperature Characteristic		4.6	Capacitance shall be measured by the steps shown in the following table.	<general purpose="" series=""> Class I : Δ C/C: ±30ppm</general>		
			The capacitance change should be measured after 5 min at each specified temperature stage.	Class2:		
			Step Temperature(°C)	X7R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82%		
			a 25±2			
			b Lower temperature±3°C	<high capacitance="" series=""> Class2:</high>		
			c 25±2	X7R/X5R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82%		
			d Upper Temperature±2° C	ТЭV. <u>А</u> С/С. 22 -02/0		
			e 25±2			
			(I) Class I			
			Temperature Coefficient shall be calculated from the formula as below			
			Temp, Coefficient = $\frac{C2 - CI}{CI \times \Delta T} \times 10^6 \text{ [ppm/°C]}$			
			C1: Capacitance at step c			
			C2: Capacitance at 125°C			
			ΔT: 100°C(=125°C-25°C) (2) Class II			
			Capacitance Change shall be calculated from the formula as below			
			$\Delta C = \frac{C2 - CI}{CI} \times 100\%$			
			C1: Capacitance at step c C2: Capacitance at step b or d			
Adhesion		4.7	terminations and in a plane parallel to the substrate size \ge 0603: 5N size $=$ 0402: 2.5N			
				size = 0201: IN		
Bending Strength	IEC 60384- 21/22	4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3			
-		4.8	Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm	size = 0201: IN		
-		4.8	Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm Test Substrate:	size = 0201: 1N No visible damage ΔC/C Class2: <general purpose="" series=""> X5R: ±10%</general>		
-		4.8	Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm	size = 0201: 1N No visible damage ΔC/C Class2: <general purpose="" series=""> X5R: ±10% <high capacitance="" series=""></high></general>		
-		4.8	Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm Test Substrate:	size = 0201: 1N No visible damage ΔC/C Class2: <general purpose="" series=""> X5R: ±10% <high capacitance="" series=""> X5R: ±12.5%</high></general>		
-		4.8	Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm Test Substrate:	size = 0201: 1N No visible damage ΔC/C Class2: <general purpose="" series=""> X5R: ±10% <high capacitance="" series=""> X5R: ±12.5% Dimension(mm)</high></general>		
-		4.8	Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm Test Substrate: $\phi 4.5$ VNSCI47 40	size = 0201: 1N No visible damage $\Delta C/C$ Class2: <general purpose="" series=""> X5R: ±10% <high capacitance="" series=""> X5R: ±12.5% Dimension(mm) Type a b c</high></general>		
-		4.8	Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm Test Substrate: $\phi 4.5$ VINSCIA7 40	size = 0201: 1N No visible damage $\Delta C/C$ Class2: <general purpose="" series=""> X5R: $\pm 10\%$ <high capacitance="" series=""> X5R: $\pm 12.5\%$ Dimension(mm) Type a b c 0201 0.3 0.9 0.3</high></general>		
-		4.8	Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm Test Substrate: $\phi 4.5$ VNSCI47 40	size = 0201: 1N No visible damage $\Delta C/C$ Class2: <general purpose="" series=""> X5R: $\pm 10\%$ <high capacitance="" series=""> X5R: $\pm 12.5\%$ Dimension(mm) Type a b c 0201 0.3 0.9 0.3 0402 0.4 1.5 0.5</high></general>		
-		4.8	Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm Test Substrate: $\phi 4.5$ VINSCIA7 40	size = 0201: 1N No visible damage $\Delta C/C$ Class2: <general purpose="" series=""> X5R: ±10% <high capacitance="" series=""> X5R: ±12.5% Dimension(mm) Type a b c 0201 0.3 0.9 0.3 0402 0.4 1.5 0.5 0603 1.0 3.0 1.2</high></general>		
-		4.8	Conditions: bending I mm at a rate of I mm/s, radius jig 5 mm Test Substrate: $\downarrow \downarrow $	size = 0201: IN No visible damage $\Delta C/C$ Class2: <general purpose="" series=""> X5R: $\pm 10\%$ <high capacitance="" series=""> X5R: $\pm 12.5\%$ Dimension(mm) Type a b c 0201 0.3 0.9 0.3 0402 0.4 1.5 0.5</high></general>		

Product specification $\frac{15}{18}$

TEST	TEST METH	IOD	PROCEDURE	REQUIREMENTS
Resistance to Soldering Heat	4.9		Precondition: 150 +0/–10 °C for 1 hour, then keep for 24 \pm 1 hours at room temperature Preheating: for size ≤ 1206: 120 °C to 150 °C for 1	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned
			minute	<general purpose="" series=""></general>
			Preheating: for size >1206: 100 °C to 120 °C for 1	$\Delta C/C$
			minute and 170 °C to 200 °C for 1 minute	Class2:
			Solder bath temperature: 260 \pm 5 °C	X5R: ±10%
			Dipping time: 10 \pm 0.5 seconds	<high capacitance="" series=""></high>
			Recovery time: 24 \pm 2 hours	$\Delta C/C$
				Class2:
			_	X5R: ±10%
				D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated the temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critical area of each termination
			I. Temperature: 235 \pm 5°C / Dipping time: 2 \pm 0.5 s	
			2. Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free)	
			Depth of immersion: 10mm	
Rapid Change of	IEC 60384- 21/22	4.11	Preconditioning; 150 +0/–10 °C for 1 hour, then keep for 24 ±1 hours at .	No visual damage
Temperature		room temperature		<general purpose="" series=""></general>
				$\Delta C/C$
			5 cycles with following detail:	Class2:
			30 minutes at lower category temperature 30 minutes at upper category temperature	X5R: ±15%
				<high capacitance="" series=""></high>
			Recovery time 24 \pm 2 hours	$\Delta C/C$
				Class2:
				X5R: ±15%
			-	D.F. meet initial specified value
				R_{ins} meet initial specified value

Product specification $\frac{16}{18}$

TEST	TEST METHOD	PROCEDURE	REQUIREMENTS
Damp Heat	4.13	I. Preconditioning, class 2 only:	No visual damage after recovery
with U _r Load		150 +0/-10 °C /1 hour, then keep for 24 \pm 1 hour at room temp	<general purpose="" series=""></general>
			$\Delta C/C$
		2. Initial measure:	Class2:
		Spec: refer to initial spec C, D, IR	X5R: ±15%
		 Damp heat test: 500 ±12 hours at 40 ±2 °C; 90 to 95% R.H. 1.0 U_r applied 	D.F.
			Class2:
			X5R:
		 Recovery: Class 2: 24 ±2 hours Final measure: C, D, IR 	\leq 16V: \leq 7% or 2 x initial value whichever
			is greater
			\geq 25V: \leq 5% or 2 × initial value whichever
		P.S. If the capacitance value is less than the minimum	is greater
		value permitted, then after the other measurements	R _{ins}
		have been made the capacitor shall be preconditioned	Class2:
		according to "IEC 60384 4.1" and then the	X5R: ≥ 500 MΩ or $R_{ins} \times C_r \ge 25s$
		requirements shall be met.	whichever is less
		* General product:	<high capacitance="" series=""></high>
		0201 < 100nF	$\Delta C/C$
		0402 < IuF	Class2:
		0603 < 2.2uF	X5R: ±20%
		0805, 1206, 1210 < 4.7uF	D.F.
			Class2:
		* High cap product:	X5R: 2 × initial value max
		0201 ≥ 100nF 0402 ≥ 1uF	R _{ins}
		0603 ≥ 2.2uF	Class2:
		0805, 1206, 1210 ≥ 4.7uF	Rins × Cr ≥ 5s
			whichever is less

Product specification 17 18

Endurance				
Endurance	IEC 60384- 21/22	4.14	I. Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at _	No visual damage
	,		room temp	<general purpose="" series=""></general>
			2. Initial measure:	ΔC/C
			Spec: refer to initial spec C, D, IR	Class2:
			3. Endurance test:	×5R: ±15%
			Temperature: X5R: 85 °C	D.F.
			Specified stress voltage applied for 1,000 hours:	Class2:
			Applied 2.0 × Ur for general product*.	X5R:
			Applied 1.5 x Ur for high cap. product*.	$\leq 16V: \leq 7\%$ or 2 x initial value whichever
			Applied 1.0 x Ur for high cap. product*.	
			4. Recovery time: 24 \pm 2 hours	is greater $250\% < 5\%$ or 25% is it is bounded with the set of
			5. Final measure: C, D, IR	\geq 25V: \leq 5% or 2 × initial value whichever is greater
				is greater
			P.S. If the capacitance value is less than the minimum	R _{ins}
			value permitted, then after the other measurements	Class2:
			have been made the capacitor shall be preconditioned	X5R: ≥ 1,000 MΩ or $R_{ins} \times C_r \ge 50s$
			according to <i>"IEC 60384 4.1"</i> and then the requirements shall be met.	whichever is less
				<high capacitance="" series=""></high>
			* General product (Applied 2.0 x Ur):	$\Delta C/C$
			0201 < 100nF	Class 2:
			0402 < IuF	X5R: ±20%
			0603 < 2.2uF	D.F.
			0805, 1206, 1210 < 4.7uF	Class 2:
				X5R: $2 \times$ initial value max
			* High cap product (Applied 1.5 × Ur):	R _{ins}
			0201 ≥ 100nF	Class 2:
			$0402 \ge 1 \text{ uF}$	Rins \times Cr \ge 10s
			0603 ≥ 2.2uF	
			0805, 1206, 1210 ≥ 4.7uF	whichever is less
			* High cap product (Applied 1.0 × Ur):	
			0201: 100nF/25V, 2.2uF to 4.7uF	
			0402: 4.7uF to 22uF	
			0603: 10uF/10V to 25V 22uF to 47uF	
			0805: 10uF/ 25V, 50V, 22uF to 100uF	
			1206: 10uF/ 50V	
Voltage		4.6	Specified stress voltage applied for 1~5 seconds	No breakdown or flashover
Proof			Ur ≤ 100 V: series applied 2.5 Ur	
			$100 V < Ur \leq 200 V$ series applied	
			(1.5 Ur + 100)	
			200 V < Ur \leq 500 V series applied	
			(1.3 Ur + 100)	
			Úr > 500 V: 1.3 Ur	
			Ur ≥ 1000 V: 1.2 Ur	
			Charge/Discharge current is less than 50 mA	

Product specification 18

Version 25	Jun. 2, 2017		
	jun, 2, 2017	-	- I.R spec updated
Version 24	Mar. 6, 2017	-	- 0805 L4 spec updated
Version 23	Nov. 15, 2016	-	- Dimension updated
Version 22	Oct. 3, 2016	-	- Dimension and Soldering recommendation updated
Version 21	Jan. 28, 2016	-	- Tests and requirements updated
Version 20	Dec. 04, 2015	-	- Size updated
Version 19	Apr. 09, 2015	-	- Voltage updated
Version 18	Jul. 07, 2014	-	- Voltage updated
Version 17	Mar. 31, 2014	-	- Test condition updated
Version 16	Nov. 29, 2012	-	- Test condition updated
Version 15	Sep. 03, 2012	-	- Test condition updated
Version 14	May 16, 2012	-	- Product range updated
Version 13	May 02, 2012	-	- Product range updated
Version 12	Feb 10, 2012	-	- Product range updated
Version 11	Oct 21, 2011	-	- Product range updated
Version 10	Jun 21, 2011	-	- Product range updated
Version 9	Mar 23, 2011	-	- Product range updated
Version 8	Jan 25, 2011	-	- Rated voltage of 0201 extend to 50V
Version 7	Jan 05, 2011	-	- Product range updated
Version 6	Jul 27, 2010	-	- Dimension on 0603 and 1206 case size updated
Version 5	Apr 21, 2010	-	- The statement of "Halogen free" on the cover added
			- Dimension updated
Version 4	Jan 13, 2010	-	- Thickness updated
Version 3	Aug 17, 2009	-	- Dimension updated
Version 2	Jun 09, 2009	-	- Ordering code updated
Version I	May 15, 2009	-	- Product range updated
Version 0	Apr 15, 2009	-	 New datasheet for general purpose and high capacitance X5R series with RoHS compliant Replace the "6.3V to 50V" part of pdf files: UP-X5R_X7R_HighCaps_6.3-
			 to-25V_II, UY-X5R_X7R_HighCaps_6.3-to-25V_II Combine 0201 from pdf files: UP-NP0X5RX7RY5V_0201_6.3-to-50V_2 and UY-NPOX5RX7RY5V_0201_6.3-to-50V_2 Define global part number Description of "Halogen free compliant" added Test method and procedure updated

