imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Innovative Service Around the Globe YAGEO

DATA SHEET **SURFACE-MOUNT CERAMIC**

MULTILAYER CAPACITORS

High-Voltage

NP0/X7R I KV TO 3 KV 10 pF to 33 nF **RoHS compliant & Halogen Free**

YAGEO Phicomp

Surface-Mount Ceramic Multilayer Capacitors High-Voltage NP0/X7R 1 KV to 3 KV

<u>SCOPE</u>

This specification describes High-Voltage NP0/X7R series chip capacitors with lead-free terminations.

APPLICATIONS

PCs, Hard disk, Game PCs Power supplies LCD panel ADSL, Modem

FEATURES

Supplied in tape on reel Nickel-barrier end termination RoHS compliant Halogen Free compliant

ORDERING INFORMATION - GLOBAL PART NUMBER, PHYCOMP

CTC & 12NC

All part numbers are identified by the series, size, tolerance, TC material, packing style, voltage, process code, termination and capacitance value. **YAGEO BRAND ordering code**

GLOBAL PART NUMBER (PREFERRED)

СС	<u>XXXX</u>	<u>X</u>	<u>X</u>	<u>XXX</u>	<u>X</u>	В	<u>X</u>	<u>XXX</u>
	(1)	(2)	(3)	(4)	(5)		(6)	(7)

(I) SIZE - INCH BASED (METRIC)

0805 (2012) / 1206 (3216) / 1210 (3225) / 1808 (4520) / 1812 (4532)

(2) TOLERANCE

$C = \pm 0.25 \text{ pF}$
D = ±0.5 pF
G = ±2%
$J = \pm 5\%$
$K = \pm 10\%$
$M = \pm 20\%$

(3) PACKING STYLE

- R = Paper/PE taping reel; Reel 7 inch
- K = Blister taping reel; Reel 7 inch
- P = Paper/PE taping reel; Reel 13 inch
- F = Blister taping reel; Reel 13 inch
- C = Bulk case

(4) TC MATERIAL

NPO X7R

(5) RATED VOLTAGE

- C = 1 KV D = 2 KV S = 2.5KV
- E = 3 KV
- (6) PROCESS

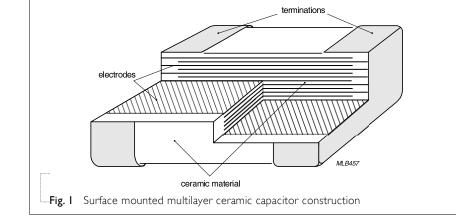
N = NPO

B = Class 2 MLCC

(7) CAPACITANCE VALUE

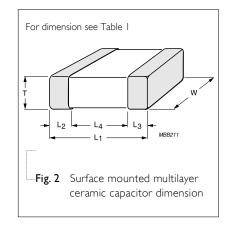
2 significant digits+number of zeros

The 3rd digit signifies the multiplying factor, and letter R is decimal point


Example: $|2| = |2 \times |0| = |20 \text{ pF}$

CONSTRUCTION

The capacitor consists of a rectangular block of ceramic dielectric in which a number of interleaved metal electrodes are contained. This structure gives rise to a high capacitance per unit volume.


The inner electrodes are connected to the two end terminations and finally covered with a layer of plated tin (NiSn). The terminations are lead-free. A cross section of the structure is shown in Fig. I.

Tabl	e I For outlin	nes see fig. 2				
TYPE	L _I (mm)	W (mm)	T (MM)	L ₂ / L _: min.	3 (mm) max.	L ₄ (mm) min.
0805	2.0 ±0.20	1.25 ±0.20		0.25	0.75	0.70
1206	3.2 ±0.30	1.6 ±0.20		0.25	0.75	I.40
1210	3.2 ±0.30	2.5 ±0.20	Refer to table 2 to 4	0.25	0.75	I.40
1808	4.5 ±0.40	2.0 ±0.30		0.25	0.75	2.20
1812	4.5 ±0.40	3.2 ±0.20		0.25	0.75	2.20

OUTLINES

Product specification

З

13

Surface-Mount Ceramic Multilayer Capacitors High-Voltage NP0/X7R 1 KV to 3 KV

Table 2	2 Sizes fro	om 0805 ta	5 1812									
CAP.	0805	1206			1210		1808			1812		
	I KV	I KV	2 KV	3 KV	I KV	2 KV	I KV	2 KV	3 KV	I KV	2 KV	3 KV
10 pF	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2					1.6±0.2	I.25±0.2	1.25±0.2	1.25±0.2
I2 pF	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2					1.6±0.2	1.25±0.2	1.25±0.2	1.25±0.2
15 pF	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2					1.6±0.2	I.25±0.2	1.25±0.2	1.25±0.2
18 pF	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2					1.6±0.2	1.25±0.2	1.25±0.2	1.25±0.2
22 pF	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2					1.6±0.2	I.25±0.2	1.25±0.2	1.25±0.2
27 pF	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2					1.6±0.2	I.25±0.2	1.25±0.2	1.25±0.2
33 pF	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.6±0.2	1.25±0.2	1.25±0.2	1.25±0.2
39 pF	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.6±0.2	1.25±0.2	1.25±0.2	1.25±0.2
47 pF	0.85±0.1	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.6±0.2	1.25±0.2	1.25±0.2	I.25±0.2
56 pF		1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.6±0.2	I.25±0.2	1.25±0.2	1.25±0.2
68 pF		1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2	1.6±0.2	I.25±0.2	1.25±0.2	1.25±0.2
82 pF		1.25±0.2	1.25±0.2		1.25±0.2	I.25±0.2	1.25±0.2	1.25±0.2	1.6±0.2	I.25±0.2	1.25±0.2	1.25±0.2
100 pF		1.25±0.2	1.25±0.2		1.25±0.2	I.25±0.2	1.25±0.2	1.25±0.2	1.6±0.2	I.25±0.2	1.25±0.2	1.25±0.2
120 pF		1.25±0.2	1.25±0.2		1.25±0.2	I.25±0.2	1.25±0.2	1.25±0.2		I.25±0.2	1.25±0.2	1.25±0.2
150 pF		1.25±0.2	1.25±0.2		I.25±0.2	I.25±0.2	1.25±0.2	1.25±0.2		I.25±0.2	1.25±0.2	1.25±0.2
180 pF		1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		I.25±0.2	1.25±0.2	1.25±0.2
220 pF		1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.25±0.2
270 pF		1.25±0.2			1.25±0.2		1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	
330 pF		1.25±0.2			1.25±0.2		1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	
390 pF		1.25±0.2			1.25±0.2		1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	
470 pF		1.25±0.2			1.25±0.2		1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	
560 pF		1.25±0.2			1.25±0.2		1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	
680 pF		1.25±0.2			1.25±0.2		1.25±0.2			I.25±0.2	1.25±0.2	
820 pF		1.25±0.2			1.25±0.2					I.25±0.2	I.25±0.2	
I.0 nF		1.25±0.2			1.25±0.2					I.25±0.2	I.25±0.2	
I.2 nF										1.25±0.2		
I.5 nF										I.25±0.2		
I.8 nF												
2.2 nF												
2.7 nF												
3.3 nF												

CAPACITANCE RANGE & THICKNESS FOR NPO

NOTE

1. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-12 series is on request

Surface-Mount Ceramic Multilayer Capacitors High-Voltage NP0/X7R 1 KV to 3 KV

Table	3 Sizes fr	om 0805 t	o 1812									
CAP.	0805	1206			1210		1808			1812		
	I KV	I KV	2 KV	2.5KV	I KV	2 KV	I KV	2 KV	3 KV	I KV	2 KV	3 KV
100 pF												
150 pF	0.85±0.1								1.6±0.2			
220 pF	0.85±0.1	1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2			1.6±0.2			
330 pF	0.85±0.1	I.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2		1.35±0.15	1.6±0.2			
470 pF	0.85±0.1	1.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.35±0.15	1.35±0.15	1.6±0.2			
680 pF	0.85±0.1	I.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.35±0.15	1.35±0.15	1.6±0.2			
I.0 nF	0.85±0.1	1.25±0.2	1.25±0.2	1.6±0.2	1.25±0.2	1.25±0.2	1.35±0.15	1.35±0.15	2.0±0.2	1.35±0.15	1.35±0.15	1.6±0.2
I.5 nF		I.25±0.2	1.25±0.2		1.25±0.2	1.25±0.2	1.35±0.15	1.35±0.15	2.0±0.2	1.35±0.15	1.35±0.15	
2.2 nF		1.25±0.2			1.25±0.2	1.60±0.2	1.35±0.15	1.6±0.2		1.35±0.15	1.35±0.15	
3.3 nF		I.25±0.2			1.25±0.2		1.35±0.15			1.35±0.15	1.35±0.15	
4.7 nF		1.25±0.2			1.25±0.2		1.35±0.15			1.35±0.15	1.35±0.15	
6.8 nF		I.25±0.2			1.25±0.2		1.6±0.2			1.35±0.15		
10 nF		1.25±0.2			1.25±0.2		1.6±0.2			1.35±0.15		
15 nF					1.25±0.2					1.35±0.15		
22 nF					1.6±0.2					1.35±0.15		
33 nF										1.6±0.2		
47 nF												
68 nF												
100 nF												

CAPACITANCE RANGE & THICKNESS FOR X7R

ΝΟΤΕ

I. Values in shaded cells indicate thickness class in mm

2. Capacitance value of non E-6 series is on request

3. For products with 5% tolerance, please contact local sales force before ordering

 $\frac{5}{13}$

THICKNESS CLASSES AND PACKING QUANTITY

Table 5	i						
SIZE	THICKNESS	TAPE WIDTH -	Ø180 MM	/ 7 INCH	Ø330 MM	/ 13 INCH	QUANTITY
CODE	CLASSIFICATION	QUANTITY PER REEL	Paper	Blister	Paper	Blister	PER BULK CASE
0201	0.3 ±0.03 mm	8 mm	15,000		50,000		
0402	0.5 ±0.05 mm	8 mm	10,000		50,000		50,000
0603	0.8 ±0.1 mm	8 mm	4,000		15,000		15,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		10,000
0805	0.8 / 0.85 ±0.1 mm	8 mm	4,000		15,000		8,000
	1.00 ±0.1 mm	8 mm		3,000		10,000	
	1.25 ±0.2 mm	8 mm		3,000		10,000	5,000
	0.6 ±0.1 mm	8 mm	4,000		20,000		
	0.8 / 0.85 ±0.1 mm	8 mm	4,000		15,000		
1206	1.00 / 1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.25 ±0.2 mm	8 mm		3,000		10,000	
	1.6 ±0.15 mm	8 mm		2,500		10,000	
	1.6 ±0.2 mm	8 mm		2,000		8,000	
	0.6 / 0.7 ±0.1 mm	8 mm		4,000		15,000	
	0.85 ±0.1 mm	8 mm		4,000		10,000	
	1.15 ±0.1 mm	8 mm		3,000		10,000	
	1.15 ±0.15 mm	8 mm		3,000		10,000	
1210	1.25 ±0.2 mm	8 mm		3,000			
1210	1.5 ±0.1 mm	8 mm		2,000			
	1.6 / 1.9 ±0.2 mm	8 mm		2,000			
	2.0 ±0.2 mm	8 mm		2,000 1,000			
	2.5 ±0.2 mm	8 mm		1,000 500			
	1.15 ±0.15 mm	l2 mm		3,000			
	1.25 ±0.2 mm	l2 mm		3,000			
1808	1.35 ±0.15 mm	I2 mm		2,000			
	1.5 ±0.1 mm	I2 mm		2,000			
	1.6 ±0.2 mm	I2 mm		2,000			
	2.0 ±0.2 mm	I2 mm		2,000			
	0.6 / 0.85 ±0.1 mm	I2 mm		2,000			
	1.15 ±0.1 mm	I2 mm		1,000			
	1.15 ±0.15 mm	l2 mm		1,000			
	1.25 ±0.2 mm	l2 mm		1,000			
1812	1.35 ±0.15 mm	l2 mm		1,000			
	1.5 ±0.1 mm	l2 mm		1,000			
	1.6 ±0.2 mm	l2 mm		1,000			
	2.0 ±0.2 mm	l2 mm		1,000			
	2.5 ±0.2 mm	l2 mm		500			

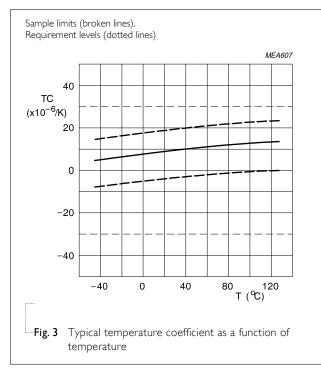
YAGEO	Phicomp
--------------	---------

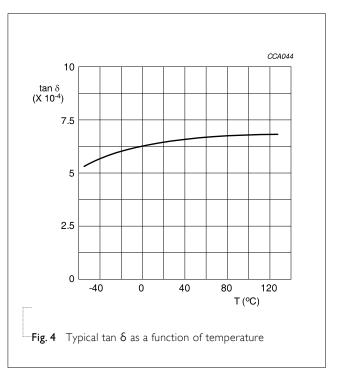
Surface-Mount Ceramic Multilayer Capacitors High-Voltage NP0/X7R 1 KV to 3 KV

ELECTRICAL CHARACTERISTICS

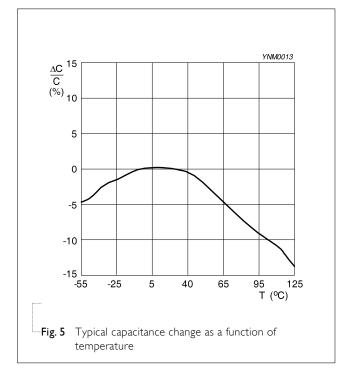
NP0/X7R DIELECTRIC CAPACITORS; NISN TERMINATIONS

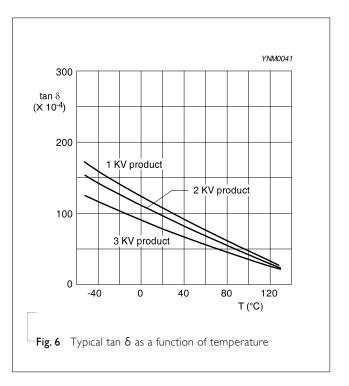
Unless otherwise stated all electrical values apply at an ambient temperature of 20 ± 1 °C, an atmospheric pressure of 86 to 106 kPa, and a relative humidity of 63 to 67%.


Table	e 6	
DESCRIF	PTION	VALUE
Capacita	nce range	10 pF to 33 nF
Capacita	nce tolerance	
NP0	C < 10 pF	±0.25 pF, ±0.5 pF
	C ≥ 10 pF	±2%, ±5%
X7R		±5% ⁽¹⁾ , ±10%
Dissipatio	on factor (D.F.)	
NP0	C < 30 _P F	≤ I / (400 + 20C)
	C ≥ 30 _P F	≤ 0.1 %
X7R		≤ 2.5 %
Insulation	n resistance after 1 minute at U _r (DC)	$R_{ins} \geq$ 10 GQ or R_{ins} × C \geq 500 seconds whichever is less
	n capacitance change as a function of temperature hture characteristic/coefficient):	
NP0		±30 ppm/°C
X7R		±15%
Operatin	g temperature range:	
NP0/X7	7R	–55 °C to +125 °C


NOTE

1. ±5% tolerance of capacitance value isn't available for X7R full product range, please contact local sales force before ordering




HIGH-VOLTAGE NP0

HIGH-VOLTAGE X7R

Product specification 8 13 Surface-Mount Ceramic Multilayer Capacitors High-Voltage NP0/X7R 1 KV to 3 KV

SOLDERING RECOMMENDATION

Table 7					
SOLDERING METHOD	SIZE 0402	0603	0805	1206	≥ 1210
Reflow	Reflow only	≥ I.0 µF	≥ 2.2 µF	≥ 4.7 µF	Reflow only
Reflow/Wave		< 1.0 µF	< 2.2 µF	< 4.7 µF	

TESTS AND REQUIREMENTS

Table 8 Test procedures and requirements

TEST	TEST METI	HOD	PROCEDURE	REQUIREMENTS		
Mounting	IEC 60384- 21/22	4.3	The capacitors may be mounted on printed-circuit boards or ceramic substrates	No visible damage		
Visual Inspection and Dimension Check		4.4	Any applicable method using × 10 magnification	In accordance with specification		
Capacitance		4.5.1	Class I: $f = 1$ MHz for C ≤ 1 nF, measuring at voltage 1 V _{rms} at 20 °C f = 1 KHz for C > 1 nF, measuring at voltage 1 V _{rms} at 20 °C Class 2: $f = 1$ KHz for C ≤ 10 µF, measuring at voltage 1 V _{rms} at 20 °C	Within specified tolerance		
Dissipation Factor (D.F.)		4.5.2	Class I: $f = 1$ MHz for C ≤ 1 nF, measuring at voltage 1 V _{ms} at 20 °C f = 1 KHz for C > 1 nF, measuring at voltage 1 V _{ms} at 20 °C Class 2: $f = 1$ KHz for C ≤ 10 µF, measuring at voltage 1 V _{ms} at 20 °C	In accordance with specification		
Insulation Resistance		4.5.3	$U_r \le 500$ V: At Ur for I minute $U_r \ge 500$ V: At 500 V for I minute	In accordance with specification		

Surface-Mount Ceramic Multilayer Capacitors High-Voltage NP0/X7R 1 KV to 3 KV

TEST	TEST MET	HOD	PROCEDURE	REQUIREMENTS		
Temperature Coefficient		4.6	Capacitance shall be measured by the steps shown in the following table. The capacitance change should be measured after 5 min at each specified temperature stage. $\boxed{Step \ Temperature(^{\circ}C)}$ a 25±2 b Lower temperature±3°C c 25±2 d Upper Temperature±2°C e 25±2 (1) Class I Temperature Coefficient shall be calculated from the formula as below $Temp, Coefficient = \frac{C2 - CI}{CI \times \Delta T} \times 10^{6} \text{ [ppm/^{\circ}C]}$ C1: Capacitance at step c C2: Capacitance at step c C2: Capacitance at 125°C ΔT : 100°C(=125°C-25°C) (2) Class II Capacitance Change shall be calculated from the formula as below $\Delta C = \frac{C2 - CI}{CI} \times 100\%$ C1: Capacitance at step c C2: Capacitance at step c C2: Capacitance at step c	 <general purpose="" series=""> Class1: Δ C/C: ±30ppm</general> Class2: X7R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82% <high capacitance="" series=""> Class2: X7R/X5R: Δ C/C: ±15% Y5V: Δ C/C: 22~-82%</high> 		
Adhesion	IEC 60384- 21/22	4.7	A force applied for 10 seconds to the line joining the terminations and in a plane parallel to the substrate	Force size ≥ 0603: 5N		
Bending Strength		4.8	Mounting in accordance with IEC 60384-22 paragraph 4.3 Conditions: bending 1 mm at a rate of 1 mm/s, radius jig 5 mm	No visible damage $\Delta C/C$ Class 1: NP0: within ±1% or 0.5 pF, whichever is greater Class2: X7R: ±10%		

TEST	TEST METH	HOD	PROCEDURE	REQUIREMENTS
Resistance to Soldering Heat	4.9		Precondition: $150 \pm 0/-10$ °C for 1 hour, then keep for 24 ± 1 hours at room temperature Preheating: for size ≤ 1206 : 120 °C to 150 °C for 1 minute Preheating: for size >1206 : 100 °C to 120 °C for 1 minute and 170 °C to 200 °C for 1 minute Solder bath temperature: 260 ± 5 °C Dipping time: 10 ± 0.5 seconds Recovery time: 24 ± 2 hours	Dissolution of the end face plating shall not exceed 25% of the length of the edge concerned $\Delta C/C$ Class 1: NP0: within ±0.5% or 0.5 pF, whichever is greate Class2: X7R: ±10% D.F. within initial specified value R _{ins} within initial specified value
Solderability		4.10	Preheated to a temperature of 80 °C to 140 °C and maintained for 30 seconds to 60 seconds.	The solder should cover over 95% of the critica area of each termination
			 Temperature: 235±5°C / Dipping time: 2 ±0.5 s Temperature: 245±5°C / Dipping time: 3 ±0.5 s (lead free)Depth of immersion: 10mm 	
Rapid Change of	IEC 60384- 21/22	4.	Preconditioning; 150 +0/–10 °C for 1 hour, then keep for -	No visual damage
Temperature			24 ± 1 hours at room temperature	ΔC/C Class I:
			5 cycles with following detail: 30 minutes at lower category temperature 30 minutes at upper category temperature	NP0: within ±1% or 1 pF, whichever is greater Class2: X7R: ±15%
			Recovery time 24 ±2 hours	D.F. meet initial specified value R _{ins} meet initial specified value
Damp Heat		4.13	I. Preconditioning, class 2 only:	No visual damage after recovery
			150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp	ΔC/C
			2. Initial measure:	Class I:
			Spec: refer to initial spec C, D, IR	NP0: within $\pm 2\%$ or 1 pF, whichever is greater
			3. Damp heat test:	Class2:
			500 ± 12 hours at 40 ±2 °C;	X7R: ±15%
			90 to 95% R.H.	D.F.
			4. Recovery: Class I: 6 to 24 hours	Class 1: NP0: $\leq 2 \times \text{specified value}$
			Class 2: 24 \pm 2 hours	Class2:
			5. Final measure: C, D, IR	X7R: ≥ 25 V: ≤ 5%
			P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be preconditioned according to <i>"IEC 60384 4.1"</i> and then the requirement shall be met.	R_{ins} Class 1: NP0: ≥ 2,500 MΩ or $R_{ins} × C_r ≥ 25s$ whichever is less Class2: X7R: ≥ 500 MΩ or $R_{ins} × C_r ≥ 25s$ whichever is less

TEST METHOD

PROCEDURE

TEST

Surface-Mount Ceramic Multilayer Capacitors High-Voltage NP0/X7R 1 KV to 3 KV

1201	TESTTIETT	100	TROCEDORE								
Endurance	IEC 60384- 21/22	4.14	 Preconditioning, class 2 only: 150 +0/-10 °C /1 hour, then keep for 24 ±1 hour at room temp Initial measure: Spec: refer to initial spec C, D, IR Endurance test: Temperature: NP0/X7R: 125 °C Specified stress voltage applied for 1,000 hours. High-Voltage series follows the stress conditions below: 			No visual damage $\Delta C/C$ Class I: NP0: within $\pm 2\%$ or 1 pF, whichever is greated Class2: X7R: $\pm 15\%$ D.F. Class I: NP0: $\leq 2 \times$ specified value					
								Voltage	NPO	X7R	Class2: X7R: ≥ 25 V: ≤ 5%
								$\leq 100 \vee$	2.0 x Ur	2.0 × Ur	
								200/250V I.5 × Ur I.5 × Ur R _{ins} 500/630V I.3 × Ur I.2 × Ur Class I:			
	\geq KV							$1 \ge 1$ KV $1 \ge 2$ KV $1 \le 2$ KV $1 \ge 2$ KV $1 \le 2$ KV $1 \ge 2$ KV = 2 KV $1 \ge 2$ KV $1 \ge 2$ KV = 2 KV $1 \ge 2$ KV = 2 KV $1 \ge 2$	NP0: ≥ 4,000 M Ω or R _{ins} × C _r ≥ 40s whichever is less		
				3. Recovery time: 24 ± 2 hours			Class2: X7R: $\ge 1,000 \text{ M}\Omega \text{ or}$ R _{ins} $\times \text{C}_r \ge 50 \text{ s whichever is less}$				
				4. Final measure: C, D, IR							
				P.S. If the capacitance value is less than the minimum value permitted, then after the other measurements have been made the capacitor shall be presenditioned asserting to $\frac{1000}{1000} = 0.0000000000000000000000000000000$							
			be preconditioned according to <i>"IEC 60384 4.1"</i> and then the requirement shall be met.								
	Voltage Proof	f		Specified stress voltage applied for 1~5 seconds			No breakdown or flashover				
				Ur ≤ 100 V: series applied 2.5 Ur 100 V < Ur ≤ 200 V series applied (1.5 Ur + 100) 200 V < Ur ≤ 500 V series applied (1.3 Ur + 100) Ur > 500 V: 1.3 Ur Ur ≥ 1KV: 1.2 Ur							
				rge current les	s than 50mA						
				0							

REQUIREMENTS

Surface-Mount Ceramic Multilayer Capacitors High-Voltage NP0/X7R 1 KV to 3 KV

REVISION	DATE	CHANGE NOTIFICATION	DESCRIPTION
Version 11	Jul. 13, 2018	-	- Add NPO/1206/10pF to 47pF/3KV
Version 10	Mar. 7, 2017	-	- 0805 L4 spec updated
Version 9	Jan. 16, 2017	-	- Product range updated
Version 8	Oct. 12, 2015	-	- Product range updated
Version 7	May 21, 2014	-	- Product range updated
Version 6	Jun. 17, 2012	-	- Product range updated
Version 5	Sep 25, 2012	-	- Product range updated
Version 4	Aug 08, 201 I	-	- Product range updated
Version 3	Jan 19, 2011	-	- Dimension updated
			- Add NP0 0805 IKV
Version 2	Feb 02, 2010	-	- Change to dual brand datasheet that describe High-Voltage NP0/X7R series with RoHS compliant
			- Replace the high voltage part of pdf files: UP-NP0X7R_HV_IK-to-4KV_I and UY-NP0X7R_HV_IK-to-4KV_I
			- Description of "Halogen Free compliant" added
			- Product range updated
			- Define global part number
			- Test method and procedure updated
Version I	Sep 30, 2005	-	- Thickness revised

