imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICONDUCTOR

CD4015BC Dual 4-Bit Static Shift Register

General Description

The CD4015BC contains two identical, 4-stage, serial-input/parallel-output registers with independent "Data", "Clock," and "Reset" inputs. The logic level present at the input of each stage is transferred to the output of that stage at each positive-going clock transition. A logic high on the "Reset" input resets all four stages covered by that input. All inputs are protected from static discharge by a series resistor and diode clamps to V_{DD} and V_{SS}.

Features

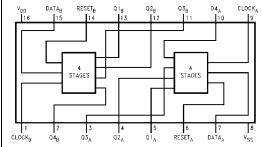
- Wide supply voltage range: 3.0V to 18V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL: Fan out of 2 driving 74L compatibility: or 1 driving 74LS
- Medium speed operation: 8 MHz (typ.) clock rate

October 1987

Revised January 2004

Fully static design: $@V_{DD} - V_{SS} = 10V$

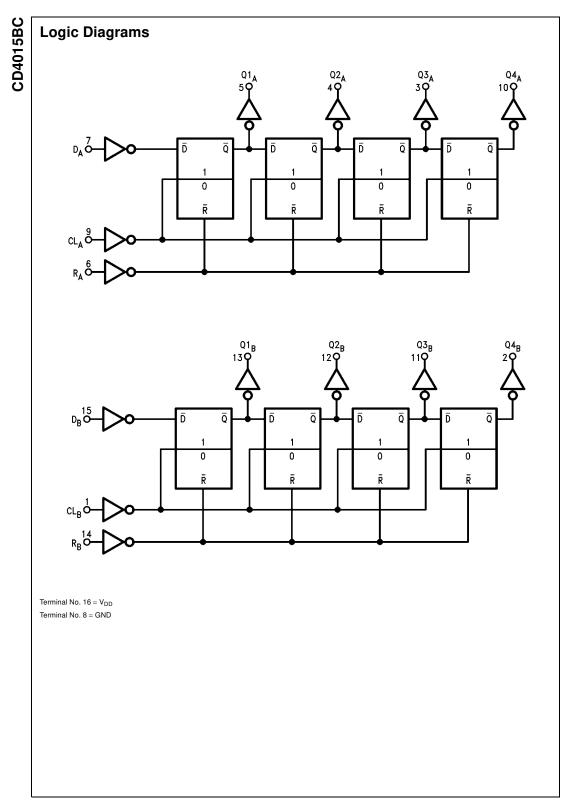
Applications


- · Serial-input/parallel-output data queueing
- Serial to parallel data conversion
- General purpose register

Ordering Code:

Order Number	Package Number	Package Description
CD4015BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4015BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram


CL (Note 1)	D	R	Q ₁	Q _n	
γ	0	0	0	Q_{n-1}	
~	1	0	1	Q_{n-1}	
~	Х	0	Q ₁	Qn	(No change)
х	х	1	0	0	

X = Don't Care Case

Note 1: Level Change

CD4015BC Dual 4-Bit Static Shift Register

© 2004 Fairchild Semiconductor Corporation DS005948

www.fairchildsemi.com

2

Absolute Maximum Ratings(Note 2)

Power Dissipation (P_D) Dual-In-Line

Lead Temperature (T_L)

(Soldering, 10 seconds)

Small Outline

(Note 3)		Conditions
DC Supply Voltage (V _{DD}) Input Voltage (V _{IN}) Storage Temperature Range (T _S)	$\begin{array}{c} -0.5 \text{ to } +18 \text{ V}_{DC} \\ -0.5 \text{ to } \text{ V}_{DD} +0.5 \text{ V}_{DC} \\ -65^{\circ}\text{C} \text{ to } +150^{\circ}\text{C} \end{array}$	DC Supply Voltag Input Voltage (V _{IN} Operating Tempe

700 mW

500 mW

260°C

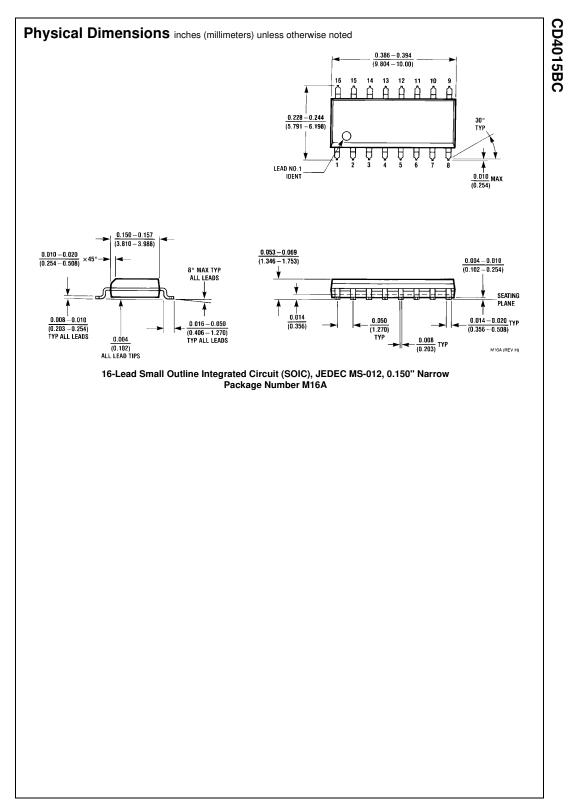
Recommended Operating S

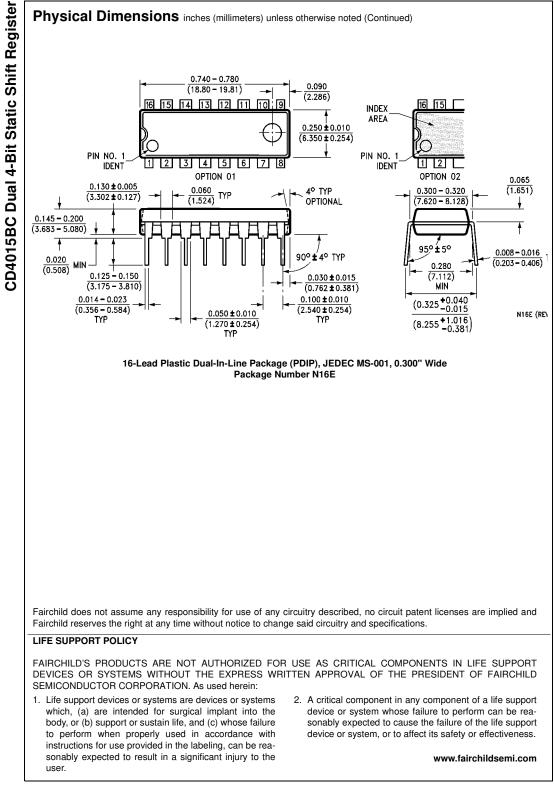
DC Supply Voltage (V _{DD})	+3 to +15 V _{DC}
Input Voltage (V _{IN})	0 to $V_{DD} V_{DC}$
Operating Temperature Range (T _A)	$-55^{\circ}C$ to $+125^{\circ}C$

Note 2: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide con-ditions for actual device operation.

Note 3: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 3)


0	Parameter	Conditions	-5	–55°C		+25°C			+125°C	
Symbol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V, V_{IN} = V_{DD} \text{ or } V_{SS}$		5		0.005	5		150	
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		10		0.010	10		300	μA
		V_{DD} = 15V, V_{IN} = V_{DD} or V_{SS}		20		0.015	20		600	
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	
	Output Voltage	$V_{DD}=10V \qquad I_O <1~\mu A$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		
	Output Voltage	$V_{DD}=10V \qquad I_O <1~\mu A$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
VIL	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2.25	1.5		1.5	
	Input Voltage	$V_{DD} = 10V, V_O = 1.0V \text{ or } 9.0V$		3.0		4.50	3.0		3.0	V
		$V_{DD} = 15V, V_O = 1.5V \text{ or } 13.5V$		4.0		6.75	4.0		4.0	
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	2.75		3.5		
	Input Voltage	$V_{DD} = 10V, V_O = 1.0V \text{ or } 9.0V$	7.0		7.0	5.50		7.0		V
		$V_{DD} = 15V, V_O = 1.5V \text{ or } 13.5V$	11.0		11.0	8.25		11.0		
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_O = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	Current (Note 4)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_O = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μA


Note 4: I_{OH} and I_{OL} are tested one output at a time.

CD4015BC

Symbol	50 pF, R_L = 200k, $t_r = t_f = 20 \text{ ns}$	Conditions	Min	Тур	Max	Un
CLOCK OPERAT		Conditions		ιγp	Widx	01
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		230	350	
PHL, PLH	riopagatori Bolay Timo	$V_{DD} = 10V$		80	160	n
		$V_{DD} = 15V$		60	120	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	
		$V_{DD} = 10V$		50	100	n
		V _{DD} = 15V		40	80	
t _{WL} , t _{WM}	Minimum Clock	$V_{DD} = 5V$		160	250	
	Pulse-Width	$V_{DD} = 10V$		60	110	n
		$V_{DD} = 15V$		50	85	
t _{rCL} , t _{fCL}	Clock Rise and	$V_{DD} = 5V$			15	
	Fall Time	$V_{DD} = 10V$			15	μ
		$V_{DD} = 15V$			15	
t _{SU}	Minimum Data	$V_{DD} = 5V$		50	100	
	Set-Up Time	$V_{DD} = 10V$		20	40	μ
		$V_{DD} = 15V$		15	30	
f _{CL}	Maximum Clock	$V_{DD} = 5V$	2	3.5		
	Frequency	$V_{DD} = 10V$	4.5	8		М
		$V_{DD} = 15V$	6	11		
C _{IN}	Input Capacitance	Clock Input		7.5	10	р
		Other Inputs		5	7.5	L.
RESET OPERATI						
t _{PHL(R)}	Propagation Delay Time	$V_{DD} = 5V$		200	400	
		$V_{DD} = 10V$		100	200	n
		$V_{DD} = 15V$		80	160	
t _{WH(R)}	Minimum Reset	$V_{DD} = 5V$		135	250	
	Pulse Width	$V_{DD} = 10V$ $V_{DD} = 15V$		40 30	80 60	n

I

