imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

October 1987 Revised January 2004

CD4020BC • CD4040BC • CD4060BC 14-Stage Ripple Carry Binary Counters • 12-Stage Ripple Carry Binary Counters • 14-Stage Ripple Carry Binary Counters

General Description

FAIRCHILD

SEMICONDUCTOR

The CD4020BC, CD4060BC are 14-stage ripple carry binary counters, and the CD4040BC is a 12-stage ripple carry binary counter. The counters are advanced one count on the negative transition of each clock pulse. The counters are reset to the zero state by a logical "1" at the reset input independent of clock.

Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- Medium speed operation: 8 MHz typ. at $V_{DD} = 10V$
- Schmitt trigger clock input

Ordering Code:

Order Number	Package Number	Package Description
CD4020BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4020BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD4040BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4040BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD4060BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4060BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

Counters • 14-Stage Ripple Carry Binary Counters CD4020BC · CD4040BC · CD4060BC 14-Stage Ripple Carry Binary Counters · 12-Stage Ripple Carry Binary

© 2004 Fairchild Semiconductor Corporation DS005953

www.fairchildsemi.com

2

CD4020BC • CD4040BC • CD4060BC

Absolute Maximum Ratings(Note 1) (Note 2)

· · · ·	
Supply Voltage (V _{DD})	-0.5V to +18V
Input Voltage (V _{IN})	–0.5V to V_{DD} +0.5V
Storage Temperature Range (T_S)	$-65^{\circ}C$ to $+150^{\circ}C$
Package Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating Conditions

Supply Voltage (V _{DD})	+3V to +15V
Input Voltage (V _{IN})	0V to V _{DD}
Operating Temperature Range (T _A)	-55°C to +125°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	–55°C		+25°C			+125°C		Units
Symbol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		5			5		150	
		V_{DD} = 10V, V_{IN} = V_{DD} or V_{SS}		10			10		300	μA
		V_{DD} = 15V, V_{IN} = V_{DD} or V_{SS}		20			20		600	
V _{OL}	LOW Level Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
VIL	LOW Level Input Voltage	$V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V$		1.5		2	1.5		1.5	
		V_{DD} = 10V, V_O = 1.0V or 9.0V		3.0		4	3.0		3.0	V
		V_{DD} = 15V, V_O = 1.5V or 13.5V		4.0		6	4.0		4.0	
V _{IH}	HIGH Level Input Voltage	$V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V$	3.5		3.5	3		3.5		
		V_{DD} = 10V, V_O = 1.0V or 9.0V	7.0		7.0	6		7.0		V
		V_{DD} = 15V, V_O = 1.5V or 13.5V	11.0		11.0	9		11.0		
I _{OL}	LOW Level Output Current	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	(Note 3)	$V_{DD} = 10V, V_O = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_O = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output Current	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	(Note 3)	$V_{DD} = 10V, V_O = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_O = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	
		$V_{DD}=15V,\ V_{IN}=15V$		0.1		10 ⁻⁵	0.1		1.0	μA

Note 3: Data does not apply to oscillator points ϕ_0 and $\overline{\phi_0}$ of CD4060BC. I_{OH} and I_{OL} are tested one output at a time.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
No. Tell VDD = 10V VDD = 15V 50 100 80 ns L ¹ WH Minimum Clock Pulse Width VDD = 5V VDD = 10V VDD = 15V 125 335 100 ns L ¹ tricL Maximum Clock Rise and Fall Time VDD = 15V VDD = 5V VDD = 10V VDD = 15V 40 100 No Limit No Limit ns L ¹ tricL Maximum Clock Rise and Fall Time VDD = 15V VDD = 5V VDD = 15V 1.5 4 No Limit No Limit ns L(R) Maximum Clock Frequency VDD = 5V VDD = 15V 1.5 4 MH HL(R) Reset Propagation Delay VDD = 5V VDD = 15V 5 12 ns H(R) Minimum Reset Pulse Width VDD = 5V VDD = 15V 200 450 VDD ns ND = 15V 80 170 100 210 NO ns M(R) Average Input Capacitance Any Input 5 7.5 pF ND Power Dissipation Capacitance Any Input 50 100 pF
$ \begin{array}{ c c c c c c } \hline V_{DD} = 15V & 40 & 80 \\ \hline V_{DD} = 15V & 125 & 335 \\ V_{DD} = 10V & 50 & 125 & ns \\ V_{DD} = 15V & 40 & 100 \\ \hline V_{DD} = 15V & 40 & 100 \\ \hline V_{DD} = 15V & 1.5 & 4 & No Limit \\ No Limit & ns \\ No Limit & No Limit \\ V_{DD} = 15V & 1.5 & 4 & No Limit \\ V_{DD} = 10V & 4 & 10 & MH \\ V_{DD} = 15V & 5 & 12 & 0 \\ \hline H_{L}(R) & Reset Propagation Delay & V_{DD} = 5V & 5 & 12 & 0 \\ \hline H_{R}(R) & Minimum Reset Pulse Width & V_{DD} = 5V & 200 & 450 & No Limit \\ H_{R}(R) & Minimum Reset Pulse Width & V_{DD} = 5V & 200 & 450 & No Limit \\ \hline H_{R}(R) & Minimum Reset Pulse Width & V_{DD} = 5V & 200 & 450 & No Limit \\ \hline H_{DD} = 15V & 80 & 170 & 0 \\ \hline H_{DD} = 15V & 100 & 100 & 210 & 100 \\ \hline H_{DD} = 15V & 100 & 100 & 210 & 100 \\ \hline H_{DD} = 15V & 100 & 100 & 100 & 100 \\ \hline H_{DD} = 15V & 100 $
L. t _{WH} Minimum Clock Pulse Width $V_{DD} = 5V$ 125 335 ns $V_{DD} = 10V$ $V_{DD} = 10V$ $V_{DD} = 15V$ 40 100 100 L. t _{ICL} Maximum Clock Rise and Fall Time $V_{DD} = 5V$ No Limit No Limit ns Maximum Clock Frequency $V_{DD} = 5V$ $V_{DD} = 10V$ No Limit ns Maximum Clock Frequency $V_{DD} = 5V$ 1.5 4 MH $V_{DD} = 10V$ 4 10 MH $V_{DD} = 15V$ 5 12 MH $AL(R)$ Reset Propagation Delay $V_{DD} = 5V$ 200 450 $V_{DD} = 15V$ 5 12 MI MH $H(R)$ Minimum Reset Pulse Width $V_{DD} = 5V$ 200 450 MI $V_{DD} = 15V$ 80 170 100 210 ns $M_{DD} = 15V$ 80 170 100 210 ns $V_{DD} = 15V$ 80 170 100 210 ns
NM Maximum Clock Rise and Fall Time $V_{DD} = 10V$ 50 125 ns AL t_{ICL} Maximum Clock Rise and Fall Time $V_{DD} = 5V$ $V_{DD} = 10V$ $No Limit$
$ \begin{array}{ c c c c c c } \hline & V_{DD} = 15V & & & & & & & & & & & & & & & & & & &$
SL- trcLMaximum Clock Rise and Fall Time $V_{DD} = 10V$ $V_{DD} = 10V$ $V_{DD} = 15V$ No Limit No LimitNo Limit No LimitLMaximum Clock Frequency $V_{DD} = 15V$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 10V$ $V_{DD} = 15V$ 1.54 410MHHL(R)Reset Propagation Delay $V_{DD} = 15V$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 10V$ $V_{DD} = 15V$ 200450 100100HL(R)Minimum Reset Pulse Width $V_{DD} = 15V$ $V_{DD} = 5V$ $V_{DD} = 15V$ 200450 100100H(R)Minimum Reset Pulse Width $V_{DD} = 15V$ $V_{DD} = 10V$ $V_{DD} = 15V$ 100210 100ns 80NAverage Input CapacitanceAny Input57.5pFPDPower Dissipation CapacitanceFor the top of top of the top of top of the top of top of top of the top of top
$ \begin{array}{ c c c c c c c } & V_{DD} = 10V & V_{DD} = 15V & No \ \begin{tabular}{ c c c c c } & No \ \begin{tabular}{ c c c c c } & No \ \begin{tabular}{ c c c c c } & No \ \begin{tabular}{ c c c c c c } & No \ \begin{tabular}{ c c c c c } & No \ \begin{tabular}{ c c c c c c } & No \ \begin{tabular}{ c c c c c c c } & No \ \begin{tabular}{ c c c c c c c } & No \ \begin{tabular}{ c c c c c c c } & No \ \begin{tabular}{ c c c c c c c } & No \ \begin{tabular}{ c c c c c c c } & No \ \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c } \hline & V_{DD} = 15V & & & No \ Limit \\ \hline & Maximum \ Clock \ Frequency & V_{DD} = 5V & 1.5 & 4 & & & & & & & & & & & & & & & & & $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \frac{1}{10000000000000000000000000000000000$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c} V_{DD} = 10V & & 100 & 210 & ns \\ V_{DD} = 15V & & 80 & 170 \\ \hline \\ H(R) & Minimum Reset Pulse Width & V_{DD} = 5V & & 200 & 450 \\ V_{DD} = 10V & & 100 & 210 & ns \\ V_{DD} = 15V & & 80 & 170 \\ \hline \\ N & Average Input Capacitance & Any Input & 5 & 7.5 & pF \\ \hline \\ p_D & Power Dissipation Capacitance & & 50 & pF \\ \hline \end{array} $
V _{DD} = 15V 80 170 /H(R) Minimum Reset Pulse Width V _{DD} = 5V 200 450 V _{DD} = 10V V _{DD} = 10V 100 210 ns N Average Input Capacitance Any Input 5 7.5 pF PD Power Dissipation Capacitance 50 50 pF
V _{DD} = 15V 80 170 N Average Input Capacitance Any Input 5 7.5 pF v _{DD} Power Dissipation Capacitance 50 pF
N Average Input Capacitance Any Input 5 7.5 pF vp_D Power Dissipation Capacitance 50 pF
PD Power Dissipation Capacitance 50 pF

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{PHL4} , t _{PLH4}	Propagation Delay Time to Q ₄	$V_{DD} = 5V$		550	1300	
		$V_{DD} = 10V$		250	525	ns
		V _{DD} = 15V		200	400	
t _{PHL} , t _{PLH}	Interstage Propagation Delay Time	$V_{DD} = 5V$		150	330	
	from Q _n to Q _{n+1}	$V_{DD} = 10V$		60	125	ns
		$V_{DD} = 15V$		45	90	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	
t _{WL} , t _{WH}	Minimum Clock Pulse Width	$V_{DD} = 5V$		170	500	
		$V_{DD} = 10V$		65	170	ns
		$V_{DD} = 15V$		50	125	
t _{rCL} , t _{fCL}	Maximum Clock Rise and Fall Time	$V_{DD} = 5V$			No Limit	
		$V_{DD} = 10V$			No Limit	ns
		$V_{DD} = 15V$			No Limit	
f _{CL}	Maximum Clock Frequency	$V_{DD} = 5V$	1	3		
		$V_{DD} = 10V$	3	8		MH
		$V_{DD} = 15V$	4	10		
t _{PHL(R)}	Reset Propagation Delay	$V_{DD} = 5V$		200	450	
		$V_{DD} = 10V$		100	210	ns
		$V_{DD} = 15V$		80	170	
t _{WH(R)}	Minimum Reset Pulse Width	$V_{DD} = 5V$		200	450	
		$V_{DD} = 10V$		100	210	ns
		$V_{DD} = 15V$		80	170	
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacitance			50		pF

Note 5: AC Parameters are guaranteed by DC correlated testing.

RC Oscillator Notes:

1.
$$R_2 = 2 R_1 \text{ to } 10 R_1$$

2. RC Oscillator applications are not recommended at supply voltages below 7.0V for $R_1 < 50 \ k\Omega$

3.
$$f \approx \frac{1}{2.2 R_1 C_X}$$
 at $V_{CC} = 10V$

CD4020BC • CD4040BC • CD4060BC

