: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Absolute Maximum Ratings(Note 1) (Note 2)

Supply Voltage (V_{DD})	-0.5 V to +18 V
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{S}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Package Dissipation (P_{D})	
\quad Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature ($\left.\mathrm{T}_{\mathrm{L}}\right)$	
\quad (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$

DC Electrical Characteristics (Note 2)

Recommended Operating

 Conditions| Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$ | +3 V to +15 V |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{I N}\right)$ | 0 V to V_{DD} |
| Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right) \quad-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | |
| | |
| | |
| Note 1: "Absolute Maximum Ratings" are those values beyond which the | |
| safety of the device cannot be guaranteed. They are not meant to mply | |
| that the devices should be operated at these limits. The tables of "Recom- | |
| mended Operating Conditions" and "Electrical Characteristics" provide con- | |
| ditions for actual device operation. | |
| Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified. | |

Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
I_{DD}	Quiescent Device Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{DD}} \text { or } \mathrm{V}_{\mathrm{SS}} \end{aligned}$		$\begin{gathered} 5 \\ 10 \\ 20 \end{gathered}$			$\begin{gathered} 5 \\ 10 \\ 20 \end{gathered}$		$\begin{aligned} & 150 \\ & 300 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$
V_{OL}	LOW Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
V_{OH}	HIGH Level Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	$\begin{gathered} 5 \\ 10 \\ 15 \end{gathered}$		$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$		V
$\mathrm{V}_{\text {IL }}$	LOW Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 2 \\ & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	V
V_{IH}	HIGH Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \text { or } 13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{aligned} & 3 \\ & 6 \\ & 9 \end{aligned}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		V
${ }_{\mathrm{OL}}$	LOW Level Output Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=0.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 0.64 \\ 1.6 \\ 4.2 \end{gathered}$		$\begin{gathered} \hline 0.51 \\ 1.3 \\ 3.4 \end{gathered}$	$\begin{gathered} \hline 0.88 \\ 2.25 \\ 8.8 \end{gathered}$		$\begin{gathered} \hline 0.36 \\ 0.9 \\ 2.4 \end{gathered}$		mA
I_{OH}	HIGH Level Output Current (Note 3)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=9.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=13.5 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline-0.64 \\ -1.6 \\ -4.2 \end{gathered}$		$\begin{gathered} \hline-0.51 \\ -1.3 \\ -3.4 \end{gathered}$	$\begin{gathered} \hline-0.88 \\ -2.25 \\ -8.8 \end{gathered}$		$\begin{gathered} \hline-0.36 \\ -0.9 \\ -2.4 \end{gathered}$		mA
I_{IN}	Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}}=15 \mathrm{~V} \end{aligned}$		$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{r} -10^{-5} \\ 10^{-5} \end{array}$	$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{r} \hline-1.0 \\ 1.0 \end{array}$	$\mu \mathrm{A}$

Note 3: Data does not apply to oscillator points ϕ_{0} and $\bar{\phi}_{0}$ of CD4060BC. I_{OH} and I_{OL} are tested one output at a time.

AC Electrical Characteristics (Note 4) CD4020BC, CD4040BC $T_{A}=25^{\circ} \mathrm{C}, C_{L}=50 \mathrm{pF}, R_{L}=200 \mathrm{k}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$, unless otherwise noted						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
$\mathrm{t}_{\text {PHL1 }}$, tPLH1	Propagation Delay Time to Q_{1}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{aligned} & 250 \\ & 100 \\ & 75 \end{aligned}$	$\begin{aligned} & 550 \\ & 210 \\ & 150 \\ & \hline \end{aligned}$	ns
${ }_{\text {tPHL }}$, $\mathrm{P}_{\text {PLH }}$	Interstage Propagation Delay Time from Q_{n} to Q_{n+1}	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & \hline 150 \\ & 60 \\ & 45 \end{aligned}$	$\begin{aligned} & 330 \\ & 125 \\ & 90 \end{aligned}$	ns
$\mathrm{t}_{\text {THL }}$, $\mathrm{T}_{\text {TLH }}$	Transition Time	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 100 \\ 50 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 200 \\ & 100 \\ & 80 \\ & \hline \end{aligned}$	ns
${ }^{\text {twL }}$, t_{WH}	Minimum Clock Pulse Width	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$		$\begin{gathered} \hline 125 \\ 50 \\ 40 \\ \hline \end{gathered}$	$\begin{aligned} & 335 \\ & 125 \\ & 100 \end{aligned}$	ns
$\mathrm{trCL}, \mathrm{t}_{\mathrm{fCL}}$	Maximum Clock Rise and Fall Time	$\begin{aligned} & \mid V_{D D}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$			No Limit No Limit No Limit	ns
f_{CL}	Maximum Clock Frequency	$\begin{aligned} & \hline V_{D D}=5 \mathrm{~V} \\ & V_{D D}=10 \mathrm{~V} \\ & V_{D D}=15 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{gathered} 1.5 \\ 4 \\ 5 \end{gathered}$	$\begin{gathered} \hline 4 \\ 10 \\ 12 \\ \hline \end{gathered}$		MHz
$\mathrm{t}_{\text {PHL (R) }}$	Reset Propagation Delay	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	$\begin{aligned} & 450 \\ & 210 \\ & 170 \end{aligned}$	ns
${ }^{\text {W }} \mathrm{H}(\mathrm{R})$	Minimum Reset Pulse Width	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 200 \\ 100 \\ 80 \end{gathered}$	$\begin{aligned} & 450 \\ & 210 \\ & 170 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Average Input Capacitance	Any Input		5	7.5	pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance			50		pF
Note 4: AC P	eters are guaranteed by DC correlated te	sting.				

Physical Dimensions inches（millimeters）unless otherwise noted

