

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

October 1987 Revised March 2002

CD4021BC 8-Stage Static Shift Register

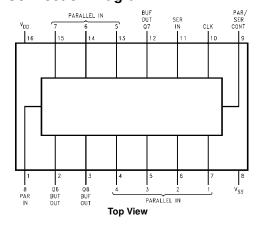
General Description

The CD4021BC is an 8-stage parallel input/serial output shift register. A parallel/serial control input enables individual JAM inputs to each of 8 stages. Q outputs are available from the sixth, seventh, and eighth stages. All outputs have equal source and sink current capabilities and conform to standard "B" series output drive.

When the parallel/serial control input is in the logical "0" state, data is serially shifted into the register synchronously with the positive transition of the clock. When the parallel/serial control is in the logical "1" state, data is jammed into each stage of the register asynchronously with the clock.

All inputs are protected against static discharge with diodes to $\rm V_{DD}$ and $\rm V_{SS}.$

Features


- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: Fan out of 2 driving 74L or 1 driving 74LS
- 5V-10V-15V parametric ratings
- Symmetrical output characteristics
- Maximum input leakage 1 µA at 15V over full temperature range

Ordering Code:

Order Number	Order Code	Package Description
CD4021BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4021BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Truth Table

C _L (Note 1)	Serial Input	Parallel/ Serial Control	PI 1	PI n	Q1 (Internal)	Q _n (Note 2)
Χ	X	1	0	0	0	0
X	X	1	0	1	0	1
X	Χ	1	1	0	1	0
Χ	Χ	1	1	1	1	1
~	0	0	Х	Х	0	Q_{n-1}
~	1	0	Х	Х	1	Q_{n-1}
~	Χ	0	Х	Х	Q1	Q_n

X = Don't care case

Note 1: Level change Note 2: No change

Logic Diagram SERIAL 11 INPUT 10 CLOCK CONTROL PARALLEL/SERIAL 8 PARALLEL/SERIAL 9 PARALLEL/SERIAL 9

Absolute Maximum Ratings(Note 3)

(Note 4)

 $\begin{tabular}{ll} Supply Voltage (V_{DD}) & -0.5V to +18V \\ Input Voltage (V_{IN}) & -0.5V to V_{DD} +0.5V \\ \end{tabular}$

Storage Temperature Range (Ts) -65°C to +150°C

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 4)

Supply Voltage (V_{DD}) 3V to 15V Input Voltage (V_{IN}) 0 to V_{DD}

Operating Temperature Range (T_A)

Note 3: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 4: V_{SS} = 0V unless otherwise specified.

DC Electrical Characteristics (Note 4)

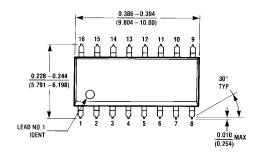
Symbol	Parameter	Conditions	-5	–55°C		+25°C			+125°C	
Syllibol	Farameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		5		0.1	5		150	
	Current	$V_{DD} = 10V$, $V_{IN} = V_{DD}$ or V_{SS}		10		0.2	10		300	μΑ
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		20		0.3	20		600	
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	
	Output Voltage	$V_{DD} = 10V \qquad I_O < 1 \; \mu A$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		
	Output Voltage	$V_{DD} = 10V$ $ I_O < 1 \mu A$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V _{IL}	LOW Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$		1.5		2	1.5		1.5	
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$		4.0		6	4.0		4.0	
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V \text{ or } 4.5V$	3.5		3.5	3		3.5		
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V \text{ or } 9.0V$	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V \text{ or } 13.5V$	11.0		11.0	9		11.0		
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	Current (Note 5)	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.2		0.90		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8		2.4		
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	Current (Note 5)	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.2		-0.90		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	μА
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μА

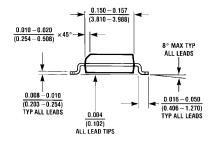
Note 5: I_{OH} and I_{OL} are tested one output at a time.

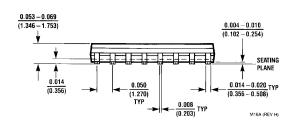
AC Electrical Characteristics (Note 6) $T_A = 25^{\circ}C$, input t_r , $t_f = 20$ ns, $C_L = 50$ pF, $R_L = 200$ k Ω

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PLH} , t _{PHL}	Propagation Delay Time	$V_{DD} = 5V$		240	350	
		$V_{DD} = 10V$		100	175	ns
		$V_{DD} = 15V$		70	140	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$		100	200	
		$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	
CL	Maximum Clock	$V_{DD} = 5V$	2.5	3.5		
	Input Frequency	$V_{DD} = 10V$	5	10		MHz
		$V_{DD} = 15V$	8	16		
W	Minimum Clock	$V_{DD} = 5V$		100	200	
	Pulse Width	$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	
CL, t _f CL	Clock Rise and	$V_{DD} = 5V$			15	
	Fall Time (Note 6)	$V_{DD} = 10V$			15	μs
		$V_{DD} = 15V$			15	
3	Minimum Set-Up Time					
	Serial Input	$V_{DD} = 5V$		60	120	
	t _H ≥ 200 ns	$V_{DD} = 10V$		40	80	ns
	(Ref. to CL)	$V_{DD} = 15V$		30	60	
	Parallel Inputs	$V_{DD} = 5V$		25	50	
	t _H ≥ 200 ns	$V_{DD} = 10V$		15	30	ns
	(Ref. to P/S)	$V_{DD} = 15V$		10	20	
Н	Minimum Hold Time	$V_{DD} = 5V$			0	
	Serial In, Parallel In, t _s ≥ 400 ns	$V_{DD} = 10V$			10	ns
	Parallel/Serial Control	$V_{DD} = 15V$			15	
WH	Minimum P/S	$V_{DD} = 5V$		150	250	
	Pulse Width	$V_{DD} = 10V$		75	125	ns
		$V_{DD} = 15V$		50	100	
REM	Minimum P/S Removal	$V_{DD} = 5V$		100	200	
	Time (Ref. to CL)	$V_{DD} = 10V$		50	100	ns
		$V_{DD} = 15V$		40	80	
21	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation			100		pF
	Capacitance (Note 8)					

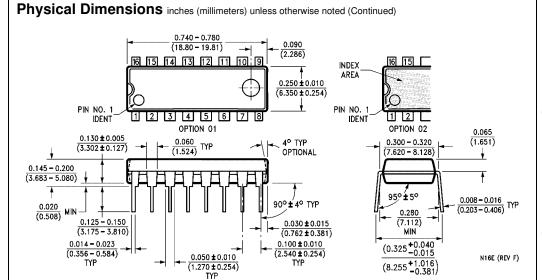
Note 6: AC Parameters are guaranteed by DC correlated testing.


Note 7: If more than one unit is cascaded t_rCL should be made less than or equal to the fixed propagation delay of the output of the driving stage for the esti-


Note 8: CPD determines the no load AC power consumption of any CMOS device. For complete explanation, see 74C family characteristics application note AN-90.


Typical Performance Characteristics 35 30 25 I_{SINK} (mA) 20 15 V_{CC} = 10V 10 5 $\overline{V}_{CC} = 5V$ 0 0 8 10 12 14 16 18 $V_{\mathsf{OUT}}\left(V\right)$ -0 **-**5 -10 Isource (mA) V_{CC} = 10V **-**15 **-**20 **-**25 $V_{CC} = 1.5V$ -30 -35 18 16 14 12 10 8 6 $V_{CC} - V_{OUT} (V)$ 400 tpp - PROPRAGATION DELAY (ns) 350 V_{CC} = 5V 300 250 200 150 V_{CC} = 10V 100 50 V_{CC} = 15V 50 100 125 150 175 25

C_L - LOAD CAPACITANCE (pF)


Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com