

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CD4028BC BCD-to-Decimal Decoder

General Description

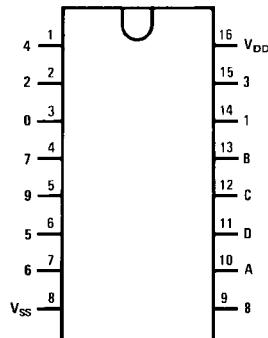
The CD4028BC is a BCD-to-decimal or binary-to-octal decoder consisting of 4 inputs, decoding logic gates, and 10 output buffers. A BCD code applied to the 4 inputs, A, B, C, and D, results in a high level at the selected 1-of-10 decimal decoded outputs. Similarly, a 3-bit binary code applied to inputs A, B, and C is decoded in octal at outputs 0–7. A high level signal at the D input inhibits octal decoding and causes outputs 0–7 to go LOW.

All inputs are protected against static discharge damage by diode clamps to V_{DD} and V_{SS} .

Features

- Wide supply voltage range: 3.0V to 15V
- High noise immunity: 0.45 V_{DD} (typ.)
- Low power TTL compatibility: fan out of 2 driving 74L or 1 driving 74LS
- Low power
- Glitch free outputs
- “Positive logic” on inputs and outputs

Applications


- Code conversion
- Address decoding
- Indicator-tube decoder

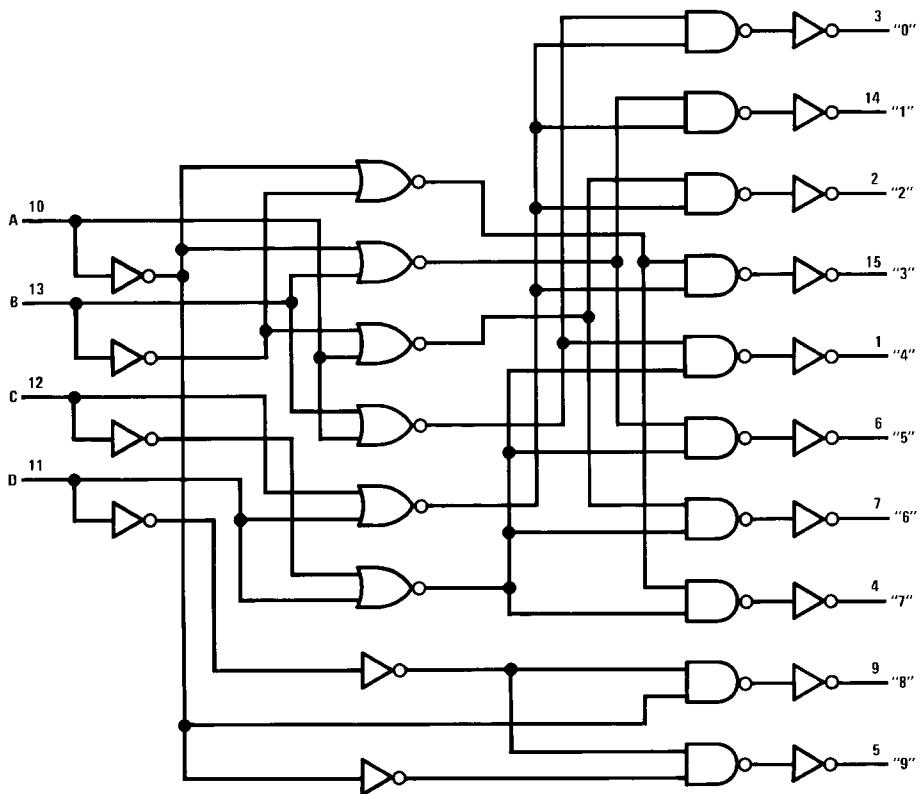
Ordering Code:

Order Number	Package Number	Package Description
CD4028BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4028BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Top View


Truth Table

	D	C	B	A	0	1	2	3	4	5	6	7	8	9
	0	0	0	0	1	0	0	0	0	0	0	0	0	0
	0	0	0	1	0	1	0	0	0	0	0	0	0	0
	0	0	1	0	0	0	1	0	0	0	0	0	0	0
	0	0	1	1	0	0	0	1	0	0	0	0	0	0
	0	1	0	0	0	0	0	0	1	0	0	0	0	0
	0	1	0	1	0	0	0	0	0	1	0	0	0	0
	0	1	1	0	0	0	0	0	0	0	1	0	0	0
	0	1	1	1	0	0	0	0	0	0	0	1	0	0
1 = HIGH Level	1	0	0	0	0	0	0	0	0	0	0	0	1	0
0 = LOW Level	1	0	0	1	0	0	0	0	0	0	0	0	0	1
	1	0	1	0	0	0	0	0	0	0	0	0	1	0
	1	0	1	1	0	0	0	0	0	0	0	0	0	1
	1	1	0	0	0	0	0	0	0	0	0	0	1	0
	1	1	0	1	0	0	0	0	0	0	0	0	0	1
	1	1	1	0	0	0	0	0	0	0	0	0	1	0
	1	1	1	1	0	0	0	0	0	0	0	0	0	1

BCD States

Extraordinary States

Logic Diagram

Absolute Maximum Ratings (Note 1)

(Note 2)

Supply Voltage (V_{DD})	-0.5 to +18V
Input Voltage (V_{IN})	-0.5 to V_{DD} +0.5V
Storage Temperature Range (T_S)	-65°C to +150°C
Power Dissipation (P_D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T_L)	
(Soldering, 10 seconds)	260°C

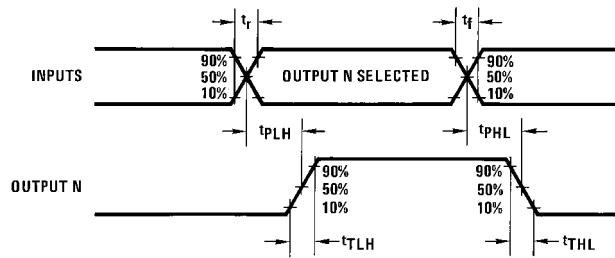
Recommended Operating Conditions (Note 2)

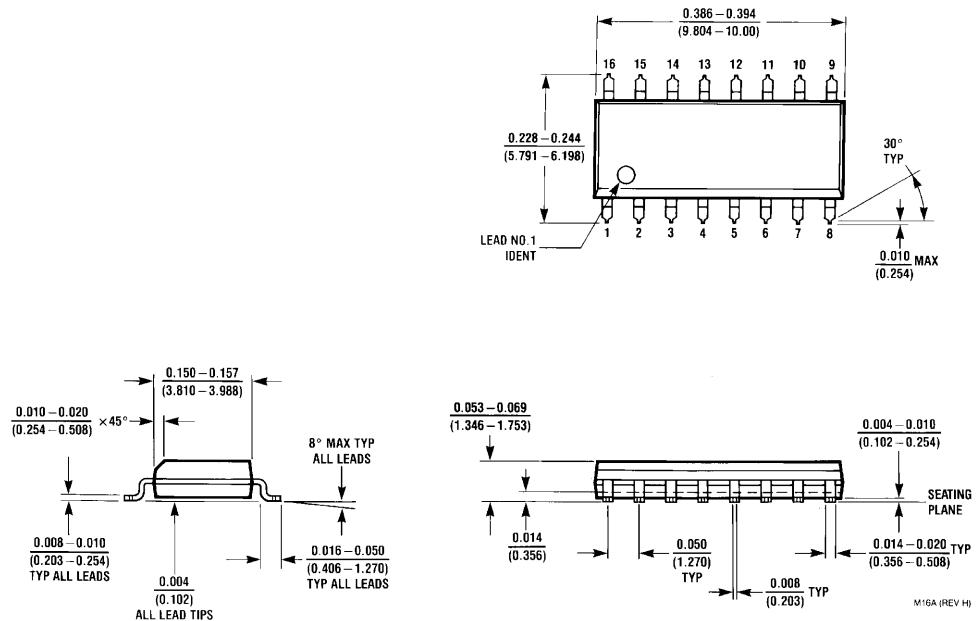
Supply Voltage (V_{DD})	3 to 15V
Input Voltage (V_{IN})	0 to V_{DD} V
Operating Temperature Range (T_A)	-55°C to +125°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed, they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

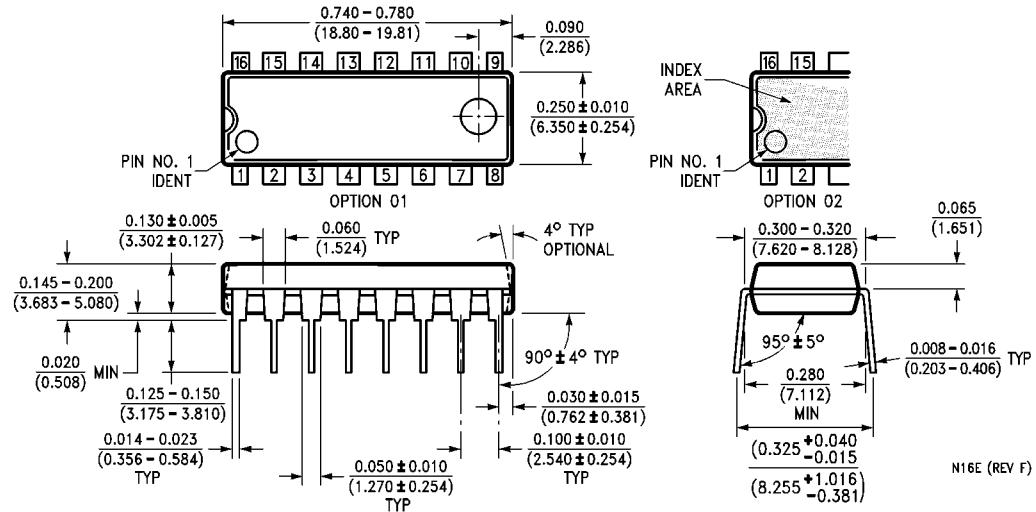
Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 2)


Symbol	Parameter	Conditions	-55°C		+25°C			+125°C		Units
			Min	Max	Min	Typ	Max	Min	Max	
I_{DD}	Quiescent Device Current	$V_{DD} = 5V, V_{IN} = V_{DD}$ or V_{SS} $V_{DD} = 10V, V_{IN} = V_{DD}$ or V_{SS} $V_{DD} = 15V, V_{IN} = V_{DD}$ or V_{SS}			5		0.01	5		150
					10		0.01	10		300
					20		0.02	20		600
V_{OL}	LOW Level Output Voltage	$ I_{O} < 1\ \mu A, V_{IL} = 0V, V_{IH} = V_{DD}$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$			0.05		0	0.05		0.05
					0.05		0	0.05		0.05
					0.05		0	0.05		0.05
V_{OH}	HIGH Level Output Voltage	$ I_{O} < 1\ \mu A, V_{IL} = 0V, V_{IH} = V_{DD}$ $V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	4.95		4.95	5		4.95		V
			9.95		9.95	10		9.95		
			14.95		14.95	15		14.95		
V_{IL}	LOW Level Input Voltage	$ I_{O} < 1\ \mu A$ $V_{DD} = 5V, V_O = 0.5V$ or $4.5V$ $V_{DD} = 10V, V_O = 1V$ or $9V$ $V_{DD} = 15V, V_O = 1.5V$ or $13.5V$			1.5		2.25	1.5		1.5
					3.0		4.5	3.0		3.0
					4.0		6.75	4.0		4.0
V_{IH}	HIGH Level Input Voltage	$ I_{O} < 1\ \mu A$ $V_{DD} = 5V, V_O = 0.5V$ or $4.5V$ $V_{DD} = 10V, V_O = 1V$ or $9V$ $V_{DD} = 15V, V_O = 1.5V$ or $13.5V$	3.5		3.5	2.75		3.5		V
			7.0		7.0	5.5		7.0		
			11.0		11.0	8.25		11.0		
I_{OL}	LOW Level Output Current (Note 3)	$V_{IH} = V_{DD}, V_{IL} = 0V$ $V_{DD} = 5V, V_O = 0.4V$ $V_{DD} = 10V, V_O = 0.5V$ $V_{DD} = 15V, V_O = 1.5V$	0.64		0.51	1.0		0.36		mA
			1.6		1.3	2.6		0.9		
			4.2		3.4	6.8		2.4		
I_{OH}	HIGH Level Output Current (Note 3)	$V_{IH} = V_{DD}, V_{IL} = 0V$ $V_{DD} = 5V, V_O = 4.6V$ $V_{DD} = 10V, V_O = 9.5V$ $V_{DD} = 15V, V_O = 13.5V$	-0.25		-0.2	-0.4		-0.14		mA
			-0.62		-0.5	-1.0		-0.35		
			-1.8		-1.5	-3.0		-1.1		
I_{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.1			-0.1		-1.0	μA
				0.1			0.1		1.0	


Note 3: I_{OL} and I_{OH} are tested one output at a time.

AC Electrical Characteristics (Note 4) $T_A = 25^\circ\text{C}$, $C_L = 50 \text{ pF}$, $R_L = 200\text{k}$, Input $t_r = t_f = 20 \text{ ns}$, unless otherwise specified


Symbol	Parameter	Conditions	Min	Typ	Max	Units
t_{PHL} or t_{PLH}	Propagation Delay Time	$V_{CC} = 5\text{V}$	240	480		ns
		$V_{CC} = 10\text{V}$	100	200		
		$V_{CC} = 15\text{V}$	70	140		
t_{THL} or t_{TLH}	Transition Time	$V_{CC} = 5\text{V}$	175	350		ns
		$V_{CC} = 10\text{V}$	75	150		
		$V_{CC} = 15\text{V}$	60	110		
C_{IN}	Input Capacitance	Any Input	5	7.5		pF

Note 4: AC Parameters are guaranteed by DC correlated testing.

Switching Time Waveforms

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com