

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

November 1983 Revised April 2002

CD4051BC • CD4052BC • CD4053BC Single 8-Channel Analog Multiplexer/Demultiplexer • Dual 4-Channel Analog Multiplexer/Demultiplexer • Triple 2-Channel Analog Multiplexer/Demultiplexer

General Description

The CD4051BC, CD4052BC, and CD4053BC analog multiplexers/demultiplexers are digitally controlled analog switches having low "ON" impedance and very low "OFF" leakage currents. Control of analog signals up to $15V_{p-p}$ can be achieved by digital signal amplitudes of 3-15V. For example, if $V_{DD}=5V,\,V_{SS}=0V$ and $V_{EE}=-5V,$ analog signals from -5V to +5V can be controlled by digital inputs of 0-5V. The multiplexer circuits dissipate extremely low quiescent power over the full $V_{DD}-V_{SS}$ and $V_{DD}-V_{EE}$ supply voltage ranges, independent of the logic state of the control signals. When a logical "1" is present at the inhibit input terminal all channels are "OFF".

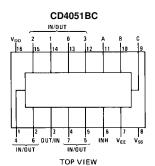
CD4051BC is a single 8-channel multiplexer having three binary control inputs. A, B, and C, and an inhibit input. The three binary signals select 1 of 8 channels to be turned "ON" and connect the input to the output.

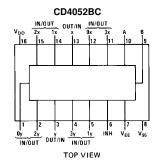
CD4052BC is a differential 4-channel multiplexer having two binary control inputs, A and B, and an inhibit input. The two binary input signals select 1 or 4 pairs of channels to be turned on and connect the differential analog inputs to the differential outputs.

CD4053BC is a triple 2-channel multiplexer having three separate digital control inputs, A, B, and C, and an inhibit input. Each control input selects one of a pair of channels which are connected in a single-pole double-throw configuration.

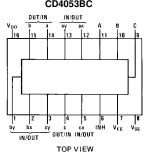
Features

- Wide range of digital and analog signal levels: digital 3 − 15V, analog to 15V_{p-p}
- Low "ON" resistance: 80Ω (typ.) over entire $15V_{p-p}$ signal-input range for $V_{DD} V_{EE} = 15V$
- High "OFF" resistance: channel leakage of ±10 pA (typ.) at V_{DD} - V_{EE} = 10V
- Logic level conversion for digital addressing signals of $3-15V\ (V_{DD}-V_{SS}=3-15V)$ to switch analog signals to $15\ V_{p-p}\ (V_{DD}-V_{EE}=15V)$
- Matched switch characteristics: $\Delta R_{ON} = 5\Omega$ (typ.) for $V_{DD} V_{EE} = 15V$
- Very low quiescent power dissipation under all digital-control input and supply conditions:
 1 µ W (typ.) at V_{DD} V_{SS} = V_{DD} V_{EE} = 10V
- Binary address decoding on chip

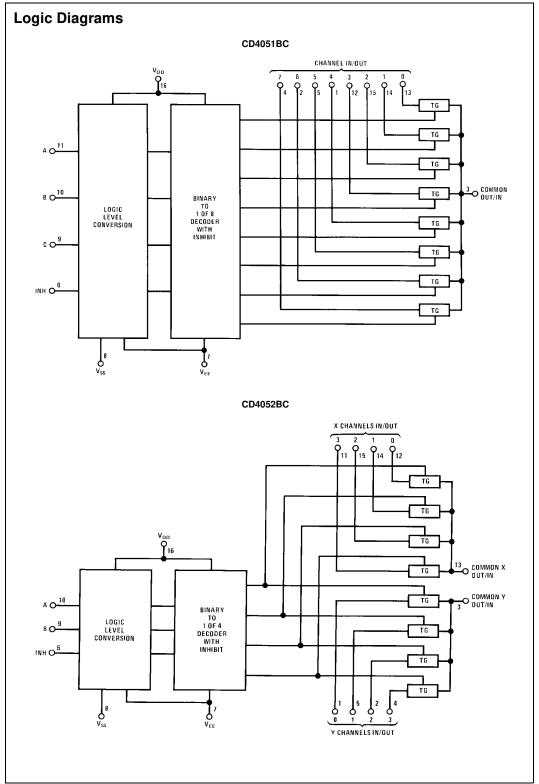

Ordering Code:

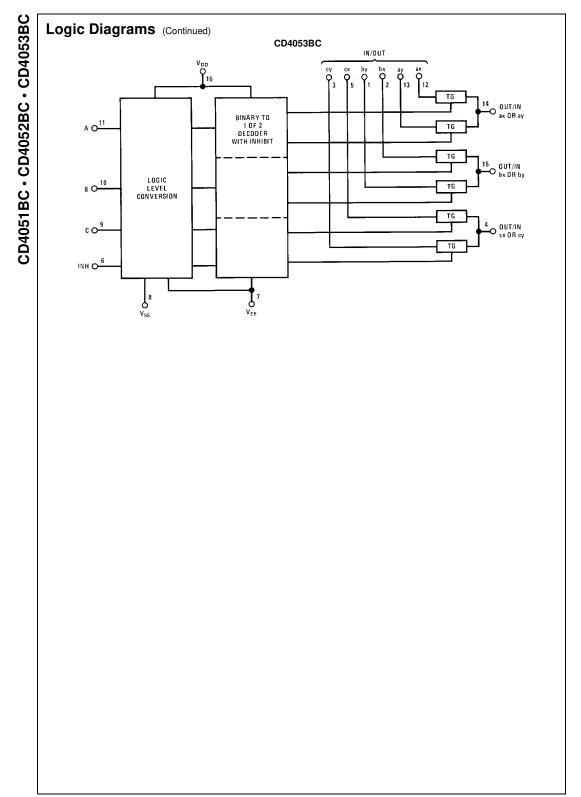

Order Number	Package Number	Package Description
CD4051BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4051BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4051BCMTC	MTC16	16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
CD4051BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD4052BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4052BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4052BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
CD4053BCM	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
CD4053BCSJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
CD4053BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.


Connection Diagrams

Pin Assignments for DIP and SOIC


CD4053BC



Truth Table

	INPUT	STATES		"ON" CHANNELS				
INHIBIT	С	В	Α	CD4051B	CD4052B	CD4053B		
0	0	0	0	0	0X, 0Y	cx, bx, ax		
0	0	0	1	1	1X, 1Y	cx, bx, ay		
0	0	1	0	2	2X, 2Y	cx, by, ax		
0	0	1	1	3	3X, 3Y	cx, by, ay		
0	1	0	0	4		cy, bx, ax		
0	1	0	1	5		cy, bx, ay		
0	1	1	0	6		cy, by, ax		
0	1	1	1	7		cy, by, ay		
1	*	*	*	NONE	NONE	NONE		

*Don't Care condition.

Absolute Maximum Ratings(Note 1)

 $\begin{array}{ccc} \text{DC Supply Voltage (V}_{\text{DD}}) & & -0.5 \text{ V}_{\text{DC}} \text{ to +18 V}_{\text{DC}} \\ \text{Input Voltage (V}_{\text{IN}}) & & -0.5 \text{ V}_{\text{DC}} \text{ to V}_{\text{DD}} + 0.5 \text{ V}_{\text{DC}} \end{array}$

Storage Temperature

Range (T_S) $-65^{\circ}C$ to $+150^{\circ}C$

Power Dissipation (P_D)

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(soldering, 10 seconds) 260°C

Recommended Operating Conditions

DC Supply Voltage (V_{DD}) +5 V_{DC} to +15 V_{DC} Input Voltage (V_{IN}) 0V to V_{DD} V_{DC}

Operating Temperature Range (T_A)

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The Electrical Characteristics tables provide conditions for actual device operation.

DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions		–55°C		+ 25 °			125°C		Units
Symbol	raiametei			Min	Max	Min	Тур	Max	Min	Max	Oilit
Control A	A, B, C and Inhibit										
I _{IN}	Input Current	$V_{IN} = 0V$	V _{EE} = 0V		-0.1		-10 ⁻⁵	-0.1		-1.0	μА
		V _{IN} = 15V	V _{EE} = 0V		0.1		10 ⁻⁵	0.1		1.0	,
I_{DD}	Quiescent Device Current	$V_{DD} = 5V$			5			5		150	
		$V_{DD} = 10V$			10			10		300	μA
		$V_{DD} = 15V$			20			20		600	
Signal Inp	puts (V _{IS}) and Outputs (V _{OS})										
R _{ON}	"ON" Resistance (Peak	$R_L = 10 \text{ k}\Omega$	$V_{DD} = 2.5V$,								
	for $V_{EE} \le V_{IS} \le V_{DD}$)	(any channel	$V_{EE} = -2.5V$		800		270	1050		1300	Ω
		selected)	or $V_{DD} = 5V$,		800		270	1030		1300	52
			$V_{EE} = 0V$								
			$V_{DD} = 5V$,								
			$V_{EE} = -5V$		310		120	400		550	Ω
			or $V_{DD} = 10V$,		310		120	400		550	32
			$V_{EE} = 0V$								
			$V_{DD} = 7.5V$,								
			$V_{EE} = -7.5V$		000			0.40		000	
			or V _{DD} = 15V,		200		80	240		320	Ω
			$V_{EE} = 0V$								
ΔR_{ON}	Δ "ON" Resistance	$R_L = 10 \text{ k}\Omega$	$V_{DD} = 2.5V$,								
	Between Any Two	(any channel	$V_{EE} = -2.5V$				40				
	Channels	selected)	or $V_{DD} = 5V$,				10				Ω
			$V_{FF} = 0V$								
			$V_{DD} = 5V$								
			$V_{EE} = -5V$				40				
			or V _{DD} = 10V,				10				Ω
			$V_{FF} = 0V$								
			$V_{DD} = 7.5V$,								
			$V_{EE} = -7.5V$				_				
			or V _{DD} = 15V,				5				Ω
			$V_{EE} = 0V$								
	"OFF" Channel Leakage	V _{DD} =7.5V,	V _{EE} =-7.5V								
	Current, any channel "OFF"	O/I=±7.5V, I/O			±50		±0.01	±50		±500	nA
	"OFF" Channel Leakage	Inhibit = 7.5V	CD4051		±200		±0.08	±200		±2000	t
	Current, all channels	$V_{DD} = 7.5V$,									
	"OFF" (Common	$V_{FF} = -7.5V$	D4052		±200		±0.04	±200		±2000	nA
	OUT/IN)	O/I = 0V									
		I/O = ±7.5V	CD4053		±200		±0.02	±200		±2000	

DC Electrical Characteristics (Continued)

Symbol	Parameter	Conditions	–55°C		+25°			125°C		Units
Symbol Farameter Conditions		Conditions	Min	Max	Min	Тур	Max	Min	Max	Oilles
Control Inputs A, B, C and Inhibit										
V _{IL}	LOW Level Input Voltage	$V_{EE} = V_{SS} R_L = 1 k\Omega$ to V_{SS}								
		$I_{\text{IS}}\!\!<\!\!2~\mu\text{A}$ on all OFF Channels								
		$V_{IS} = V_{DD}$ thru 1 k Ω								
		$V_{DD} = 5V$		1.5			1.5		1.5	
		$V_{DD} = 10V$		3.0			3.0		3.0	٧
		V _{DD} = 15V		4.0			4.0		4.0	
V _{IH}	HIGH Level Input Voltage	V _{DD} = 5	3.5		3.5			3.5		
		$V_{DD} = 10$ $V_{DD} = 15$	7		7			7		٧
		V _{DD} = 15	11		11			11		

Note 2: All voltages measured with respect to V_{SS} unless otherwise specified.

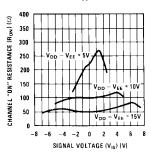
AC LIECTICAL CHARACTERISTICS (Note 3)	AC Electrical	Characteristics	(Note 3)
---------------------------------------	---------------	-----------------	----------

Symbol	Parameter	Conditions	V _{DD}	Min	Тур	Max	Units
t _{PZH.}	Propagation Delay Time from	$V_{FF} = V_{SS} = 0V$	5V		600	1200	
t _{PZL}	Inhibit to Signal Output	$R_L = 1 k\Omega$	10V		225	450	ns
	(channel turning on)	C _L = 50 pF	15V		160	320	
t _{PHZ.}	Propagation Delay Time from	V _{FF} = V _{SS} = 0V	5V		210	420	
t _{PLZ}	Inhibit to Signal Output	$R_{I} = 1 k\Omega$	10V		100	200	ns
	(channel turning off)	C _L = 50 pF	15V		75	150	
C _{IN}	Input Capacitance						
- 114	Control input				5	7.5	pF
	Signal Input (IN/OUT)				10	15	
C _{OUT}	Output Capacitance						
-001	(common OUT/IN)						
	CD4051		10V		30		
	CD4052	$V_{FF} = V_{SS} = 0V$	10V		15		pF
	CD4053	VEE - VSS - VV	10V		8		P ⁱ
C _{IOS}	Feedthrough Capacitance		101		0.2		pF
C _{PD}	Power Dissipation Capacitance				0.2		ρı
OPD	CD4051				110		
	CD4052				140		pF
	CD4053				70		Pi
Cianal Inn	uts (V _{IS}) and Outputs (V _{OS})				70		
Signal IIIp		$R_{I} = 10 \text{ k}\Omega$		ı	1		ı
	Sine Wave Response	-	4014		0.04		
	(Distortion)	f _{IS} = 1 kHz	10V		0.04		%
		$V_{IS} = 5 V_{p-p}$					
		$V_{EE} = V_{SI} = 0V$					
		$R_L=1~k\Omega,~V_{EE}=0V,~V_{IS}=5V_{p\text{-}p},$	10V		40		MHz
	"ON" (Sine Wave Input)	$20 \log_{10} V_{OS}/V_{IS} = -3 \text{ dB}$					
	Feedthrough, Channel "OFF"	$R_L = 1 \text{ k}\Omega, V_{EE} = V_{SS} = 0V, V_{IS} = 5V_{p-p},$	10V		10		MHz
		$20 \log_{10} V_{OS}/V_{IS} = -40 \text{ dB}$					
	Crosstalk Between Any Two	$R_L = 1 \text{ k}\Omega, \text{ V}_{EE} = \text{V}_{SS} = 0\text{V}, \text{ V}_{IS}(\text{A}) = 5\text{V}_{\text{p-p}}$	10V		3		MHz
	Channels (frequency at 40 dB)	$20 \log_{10} V_{OS}(B)/V_{IS}(A) = -40 \text{ dB (Note 4)}$					
t _{PHL}	Propagation Delay Signal	$V_{EE} = V_{SS} = 0V$	5V		25	55	
t _{PLH}	Input to Signal Output	C _L = 50 pF	10V		15	35	ns
			15V		10	25	
Control In	puts, A, B, C and Inhibit						
	Control Input to Signal	$V_{EE} = V_{SS} = 0V$, $R_L = 10 \text{ k}\Omega$ at both ends					
	Crosstalk	of channel.	10V		65		mV (peak)
		Input Square Wave Amplitude = 10V					
t _{PHL}	Propagation Delay Time from	V _{FF} = V _{SS} = 0V	5V		500	1000	
t _{PLH}	Address to Signal Output	C ₁ = 50 pF	10V		180	360	ns

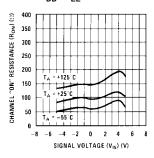
(channels "ON" or "OFF")

Note 3: AC Parameters are guaranteed by DC correlated testing.

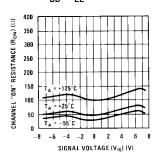
Note 4: A, B are two arbitrary channels with A turned "ON" and B "OFF".

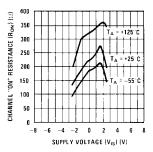

Special Considerations

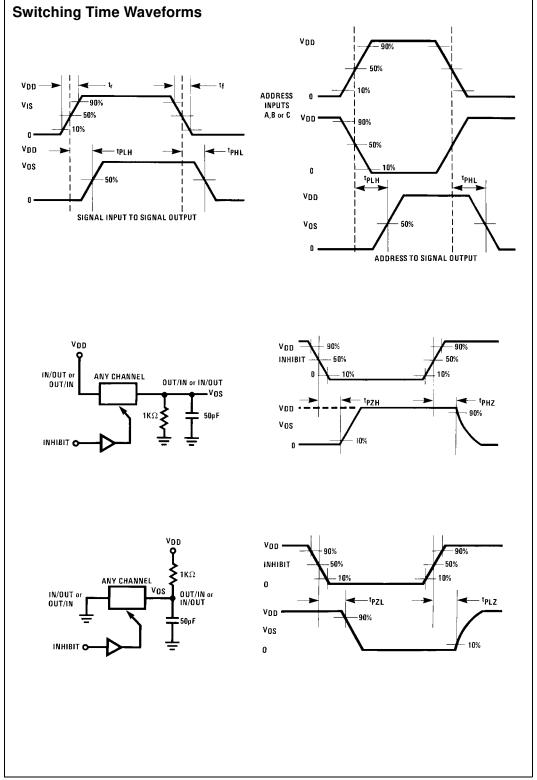
In certain applications the external load-resistor current may include both V_{DD} and signal-line components. To avoid drawing V_{DD} current when switch current flows into IN/OUT pin, the voltage drop across the bidirectional

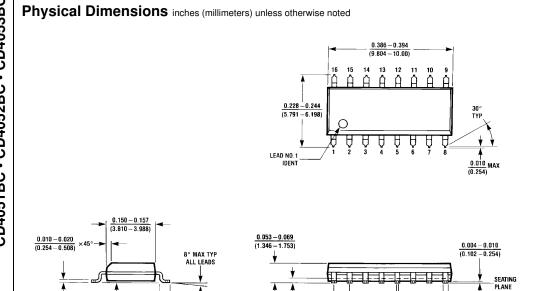

switch must not exceed 0.6V at $T_A\!\leq\!25^\circ C,$ or 0.4V at $T_A\!>\!25^\circ C$ (calculated from R_{ON} values shown). No V_{DD} current will flow through R_L if the switch current flows into OUT/IN pin.

Typical Performance Characteristics


"ON" Resistance vs Signal Voltage for $T_A=25^{\circ}C$


"ON" Resistance as a Function of Temperature for V_{DD} - V_{EE} = 10V

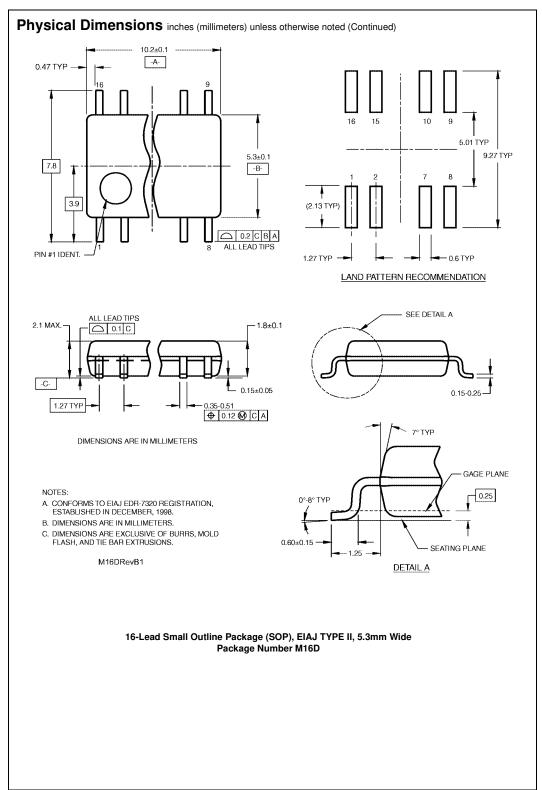


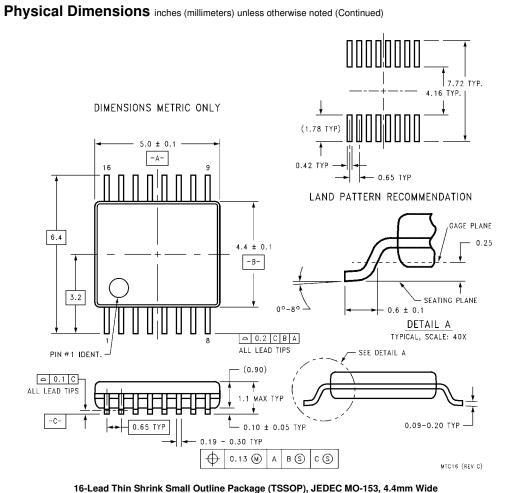

"ON" Resistance as a Function of Temperature for $V_{DD}-V_{EE}=15V$

"ON" Resistance as a Function of Temperature for $V_{DD} - V_{EE} = 5V$

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M16A

0.016-0.050 (0.406-1.270) TYP ALL LEADS 0.014 (0.356)


0.050 (1.270) TYP


 $-\frac{0.008}{(0.203)}$ TYP

0.014-0.020 (0.356-0.508)

0.008 - 0.010 (0.203 - 0.254) TYP ALL LEADS

0.004 (0.102) ALL LEAD TIPS

16-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide Package Number MTC16

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.7800.090 (18.80 - 19.81)(2.286)15 14 13 12 11 10 INDEX AREA 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 PIN NO. 1 1 2 3 4 5 6 7 8 2 IDENT IDENT OPTION 01 OPTION 02 0.065 0.130 ± 0.005 0.060 4° TYP 0.300 - 0.320(1.651)TYP (3.302 ± 0.127) (1.524)OPTIONAL $\overline{(7.620 - 8.128)}$ 0.145 - 0.200 (3.683 - 5.080)950±50 $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 0.280 (0.508)0.125 - 0.150(7.112) 0.030 ± 0.015 (3.175 - 3.810)MIN (0.762 ± 0.381) 0.014 - 0.023 0.100 ± 0.010 (0.325 +0.040 -0.015 (0.356 - 0.584) (2.540 ± 0.254) 0.050 ± 0.010 N16E (REV F) TYP (8.255 **+**1.016 **-**0.381

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

 (1.270 ± 0.254) TYP

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- 2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com