: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Absolute Maximum Ratings	
(Note 1)	
(Note 2)	
Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$	-0.5 V to +18 V
Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Storage Temperature Range $\left(\mathrm{T}_{\mathrm{S}}\right)$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Power Dissipation $\left(\mathrm{P}_{\mathrm{D}}\right)$	
\quadDual-In-Line	
\quad Small Outline	500 mW
Lead Temperature $\left(\mathrm{T}_{\mathrm{L}}\right)$	500 mW
\quad (Soldering, 10 seconds)	$300^{\circ} \mathrm{C}$

Recommended Operating

 Conditions (Note 2)| Supply Voltage $\left(\mathrm{V}_{\mathrm{DD}}\right)$ | 3 V to 15 V |
| :--- | ---: |
| Input Voltage $\left(\mathrm{V}_{\mathrm{IN}}\right)$ | 0 V to V_{DD} |
| Operating Temperature Range $\left(\mathrm{T}_{\mathrm{A}}\right)$ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply hat the devices should be operated at these limits. The tables of "Recommended Operating Conditions" and "Electrical Characteristics" provide conditions for actual device operation.
Note 2: $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise specified.
DC Electrical Characteristics (Note 2)

Symbol	Parameter	Conditions	$-55^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+125^{\circ} \mathrm{C}$		Units
			Min	Max	Min	Typ	Max	Min	Max	
I_{DD}	Quiescent Device Current	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$		0.25		0.01	0.25		7.5	
		$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		0.5		0.01	0.5		15	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$		1.0		0.01	1.0		30	

SIGNAL INPUTS AND OUTPUTS

R_{ON}	"ON" Resistance	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to }\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} / 2\right) \\ & \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 800 \\ & 310 \\ & 200 \end{aligned}$	$\begin{gathered} 270 \\ 120 \\ 80 \end{gathered}$	$\begin{gathered} 1050 \\ 400 \\ 240 \end{gathered}$	$\begin{gathered} 1300 \\ 550 \\ 320 \end{gathered}$	Ω
$\Delta \mathrm{R}_{\mathrm{ON}}$	Δ "ON" Resistance Between Any 2 of 4 Switches	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to }\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}} / 2\right) \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{SS}} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{gathered} 10 \\ 5 \end{gathered}$			Ω
$I_{\text {IS }}$	Input or Output Leakage Switch "OFF"	$\mathrm{V}_{\mathrm{C}}=0$	± 50	± 0.1	± 50	± 500	nA

CONTROL INPUTS

$\mathrm{V}_{\text {ILC }}$	LOW Level Input Voltage	$\begin{aligned} & \mathrm{V}_{I S}=\mathrm{V}_{\mathrm{SS}} \text { and } \mathrm{V}_{\mathrm{DD}} \\ & \mathrm{~V}_{\mathrm{OS}}=\mathrm{V}_{\mathrm{DD}} \text { and } \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{I}_{\mathrm{IS}}= \pm 10 \mu \mathrm{~A} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{gathered} 2.25 \\ 4.5 \\ 6.75 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$		$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	V
$\mathrm{V}_{\text {IHC }}$	HIGH Level Input Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V}(\text { Note } 7) \\ & \mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$	$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$	$\begin{gathered} 2.75 \\ 5.5 \\ 8.25 \end{gathered}$		$\begin{gathered} \hline 3.5 \\ 7.0 \\ 11.0 \end{gathered}$		V
I_{IN}	Input Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}} \geq \mathrm{V}_{\text {IS }} \geq \mathrm{V}_{\mathrm{SS}} \\ & \mathrm{~V}_{\mathrm{DD}} \geq \mathrm{V}_{\mathrm{C}} \geq \mathrm{V}_{\mathrm{SS}} \end{aligned}$		$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{r} -10^{-5} \\ 10^{-5} \end{array}$	$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$		$\begin{array}{r} \hline-0.1 \\ 0.1 \end{array}$	$\mu \mathrm{A}$

AC Electrical Characteristics (Note 3) $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=20 \mathrm{~ns}$ and $\mathrm{V}_{\mathrm{SS}}=0 \mathrm{~V}$ unless otherwise noted						
Symbol	Parameter	Conditions	Min	Typ	Max	Units
${ }_{\text {t }}{ }_{\text {PHL }}$, $\mathrm{t}_{\text {PLH }}$	Propagation Delay Time Signal Input to Signal Output	$\begin{aligned} & \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \text { (Figure 1) } \\ & \mathrm{R}_{\mathrm{L}}=200 \mathrm{k} \\ & \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 25 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & 55 \\ & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PZL }}$	Propagation Delay Time Control Input to Signal Output High Impedance to Logical Level	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \text {, (Figure 2, Figure 3) } \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$			$\begin{gathered} 125 \\ 60 \\ 50 \\ \hline \end{gathered}$	$\begin{aligned} & \text { ns } \\ & \text { ns } \\ & \text { ns } \end{aligned}$
$\mathrm{t}_{\text {PHZ }}$, tPLZ	Propagation Delay Time Control Input to Signal Output Logical Level to High Impedance Sine Wave Distortion Frequency Response-Switch "ON" (Frequency at -3 dB)	$\begin{aligned} & R_{L}=1.0 \mathrm{k} \Omega, C_{L}=50 \mathrm{pF}, \text { (Figure 2, Figure 3) } \\ & \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{~V}_{I S}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, f=1 \mathrm{kHz} \text {, (Figure 4) } \\ & \mathrm{V}_{\mathrm{C}}=\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{I S}=5 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, \\ & 20 \text { Log }_{10} \mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{\mathrm{OS}}(1 \mathrm{kHz})-\mathrm{dB}, \\ & \text { (Figure 4) } \end{aligned}$		$\begin{aligned} & 0.1 \\ & 40 \end{aligned}$	$\begin{gathered} 125 \\ 60 \\ 50 \end{gathered}$	ns ns ns \% MHz
	Feedthrough — Switch "OFF" (Frequency at -50 dB) Crosstalk Between Any Two Switches (Frequency at -50 dB) Crosstalk; Control Input to Signal Output Maximum Control Input	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{SS}}=-5.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{IS}}=5.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, 20 \mathrm{Log}_{10}, \\ & \mathrm{~V}_{\mathrm{OS}} / \mathrm{V}_{I S}=-50 \mathrm{~dB},(\text { Figure } 4) \\ & \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{C}(\mathrm{~A})}=5.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{SS}}=\mathrm{V}_{\mathrm{C}(\mathrm{~B})}=5.0 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}} 1 \mathrm{k} \Omega, \mathrm{~V}_{\mathrm{IS}(\mathrm{~A})}=5.0 \mathrm{~V}_{\mathrm{p}-\mathrm{p}}, 20 \log _{10}, \\ & \mathrm{~V}_{\mathrm{OS}(\mathrm{~B})} \mathrm{V}_{I \mathrm{IS}(\mathrm{~A})}=-50 \mathrm{~dB}(\text { Figure } 5) \\ & \mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{IN}}=1.0 \mathrm{k} \Omega, \\ & \mathrm{~V}_{\mathrm{CC}}=10 \mathrm{~V} \text { Square Wave, } \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & (\text { Figure } 6) \\ & \mathrm{R}_{\mathrm{L}}=1.0 \mathrm{k} \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF},(\text { Figure } 7) \\ & \mathrm{V}_{\mathrm{OS}(f)}=1 / 2 \mathrm{~V}_{\mathrm{OS}}(1.0 \mathrm{kHz}) \\ & \mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=10 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=15 \mathrm{~V} \end{aligned}$		$\begin{aligned} & 1.25 \\ & 0.9 \\ & 150 \\ & \\ & \\ & \\ & 6.0 \\ & 8.0 \\ & 8.5 \end{aligned}$		MHz $m V_{p-p}$ MHz MHz MHz
$\mathrm{C}_{\text {IS }}$	Signal Input Capacitance			8.0		pF
$\mathrm{Cos}^{\text {S }}$	Signal Output Capacitance	$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}$		8.0		pF
$\mathrm{C}_{\text {IOS }}$	Feedthrough Capacitance	$\mathrm{V}_{\mathrm{C}}=0 \mathrm{~V}$		0.5		pF
$\mathrm{C}_{\text {IN }}$	Control Input Capacitance			5.0	7.5	pF
Note 3: AC Parameters are guaranteed by DC correlated testing. Note 4: These devices should not be connected to circuits with the power "ON". Note 5: In all cases, there is approximately 5 pF of probe and jig capacitance in the output; however, this capacitance is specified. Note 6: $\mathrm{V}_{\text {IS }}$ is the voltage at the in/out pin and V_{OS} is the voltage at the outin pin. V_{C} is the voltage at the control input. Note 7: Conditions for $\mathrm{V}_{\mathrm{IHC}}$: a) $\mathrm{V}_{\mathrm{IS}}=\mathrm{V}_{\mathrm{DD}}$, $\mathrm{l}_{\mathrm{OS}}=$ standard B series I_{OH} b) $\mathrm{V}_{\text {IS }}=\mathrm{OV}, \mathrm{I}_{\mathrm{OL}}=$ standard B series I_{OL}.						

Typical Performance Characteristics

SUPPLY VOLTAGE ($\mathrm{V}_{\text {IS }}$) (V)

Special Considerations

In applications where separate power sources are used to drive $V_{D D}$ and the signal input, the $V_{D D}$ current capability should exceed $V_{D D} / R_{L}\left(R_{L}=\right.$ effective external load of the 4 CD4066BC bilateral switches). This provision avoids any permanent current flow or clamp action of the V_{DD} supply when power is applied or removed from CD4066BC.
In certain applications, the external load-resistor current may include both $V_{D D}$ and signal-line components. To
avoid drawing V_{DD} current when switch current flows into terminals $1,4,8$ or 11 , the voltage drop across the bidirectional switch must not exceed 0.6 V at $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$, or 0.4 V at $\mathrm{T}_{\mathrm{A}}>25^{\circ} \mathrm{C}$ (calculated from R_{ON} values shown).

No $V_{D D}$ current will flow through R_{L} if the switch current flows into terminals 2, 3, 9 or 10.

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
