

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

October 1987 Revised April 2002

CD4093BC

Quad 2-Input NAND Schmitt Trigger

General Description

The CD4093B consists of four Schmitt-trigger circuits. Each circuit functions as a 2-input NAND gate with Schmitt-trigger action on both inputs. The gate switches at different points for positive and negative-going signals. The difference between the positive (V_T^{-}) and the negative voltage (V_T^{-}) is defined as hysteresis voltage (V_H) .

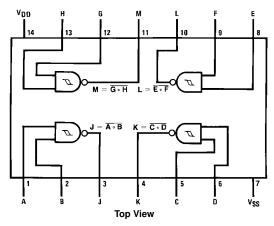
All outputs have equal source and sink currents and conform to standard B-series output drive (see Static Electrical Characteristics).

Features

- Wide supply voltage range: 3.0V to 15V
- Schmitt-trigger on each input with no external components
- Noise immunity greater than 50%
- Equal source and sink currents
- No limit on input rise and fall time
- Standard B-series output drive
- Hysteresis voltage (any input) T_A = 25°C

$$\begin{array}{lll} \text{Typical} & \text{$V_{DD}=5.0$V} & \text{$V_{H}=1.5$V} \\ & \text{$V_{DD}=10$V} & \text{$V_{H}=2.2$V} \\ & \text{$V_{DD}=15$V} & \text{$V_{H}=2.7$V} \\ \text{Guaranteed} & \text{$V_{H}=0.1$ V_{DD}} \end{array}$$

Applications


- · Wave and pulse shapers
- · High-noise-environment systems
- Monostable multivibrators
- · Astable multivibrators
- NAND logic

Ordering Code:

Order Number	der Number Package Number Package Description					
CD4093BCM	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
CD4093BCN	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagram

Absolute Maximum Ratings(Note 1)

(Note 2)

-0.5 to +18 V_{DC} -0.5 to V_{DD} +0.5 V_{DC}

 $\begin{array}{ll} \mbox{Input Voltage (V_{IN})} & -0.5 \mbox{ to V}_{DD} + 0.5 \mbox{ V}_{DC} \\ \mbox{Storage Temperature Range (T_S)} & -65^{\circ}\mbox{C to } + 150^{\circ}\mbox{C} \end{array}$

Power Dissipation (P_D)

DC Supply Voltage (V_{DD})

Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

(Soldering, 10 seconds) 260°C

Recommended Operating Conditions (Note 2)

DC Supply Voltage (V_{DD}) $3 \text{ to } 15 \text{ V}_{DC}$ Input Voltage (V_{IN}) $0 \text{ to } \text{V}_{DD} \text{ V}_{DC}$

Operating Temperature Range (T_A) $-55^{\circ}C$ to $+125^{\circ}C$

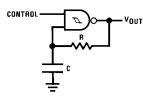
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed; they are not meant to imply that the devices should be operated at these limits. The table of "Recommended Operating Conditions" and "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{SS} = 0V$ unless otherwise specified.

DC Electrical Characteristics (Note 2)

Symbol	Dovementor	O dial	-55	–55°C		+25°C			+125°C	
	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$		0.25			0.25		7.5	
	Current	$V_{DD} = 10V$		0.5			0.5		15.0	μΑ
		$V_{DD} = 15V$		1.0			1.0		30.0	
V _{OL}	LOW Level	$V_{IN} = V_{DD,} \; I_O < 1 \; \mu A$								
	Output Voltage	$V_{DD} = 5V$		0.05		0	0.05		0.05	
		$V_{DD} = 10V$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	$V_{IN} = V_{SS}, \; I_O < 1 \; \mu A$								
	Output Voltage	$V_{DD} = 5V$	4.95		4.95	5		4.95		
		$V_{DD} = 10V$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
V _T -	Negative-Going Threshold	$ I_O < 1 \mu A$								
	Voltage (Any Input)	$V_{DD} = 5V, V_{O} = 4.5V$	1.3	2.25	1.5	1.8	2.25	1.5	2.3	
		$V_{DD} = 10V, V_{O} = 9V$	2.85	4.5	3.0	4.1	4.5	3.0	4.65	V
		$V_{DD} = 15V, V_{O} = 13.5V$	4.35	6.75	4.5	6.3	6.75	4.5	6.9	
V _T +	Positive-Going Threshold	I _O < 1 μA								
	Voltage (Any Input)	$V_{DD} = 5V, V_{O} = 0.5V$	2.75	3.6	2.75	3.3	3.5	2.65	3.5	
		$V_{DD} = 10V, V_{O} = 1V$	5.5	7.15	5.5	6.2	7.0	5.35	7.0	V
		$V_{DD} = 15V, V_{O} = 1.5V$	8.25	10.65	8.25	9.0	10.5	8.1	10.5	
V _H	Hysteresis (V _T + - V _T)	$V_{DD} = 5V$	0.5	2.35	0.5	1.5	2.0	0.35	2.0	
	(Any Input)	$V_{DD} = 10V$	1.0	4.3	1.0	2.2	4.0	0.70	4.0	V
		$V_{DD} = 15V$	1.5	6.3	1.5	2.7	6.0	1.20	6.0	
I _{OL}	LOW Level Output	$V_{IN} = V_{DD}$								
	Current (Note 3)	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
		$V_{DD} = 10V, \ V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{ОН}	HIGH Level Output	$V_{IN} = V_{SS}$								
	Current (Note 3)	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		0.51	-0.88		-0.36		
		$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
		$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μΑ

Note 3: I_{OH} and I_{OL} are tested one output at a time.

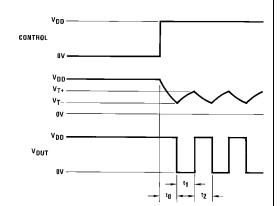

AC Electrical Characteristics (Note 4) $T_A = 25^{\circ}C,\ C_L = 50\ \text{pF},\ R_L = 200\text{k},\ \text{Input}\ t_f,\ t_f = 20\ \text{ns},\ \text{unless otherwise specified}$

Symbol	Parameter	Conditions	Min	Тур	Max	Units
t _{PHL} , t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		300	450	
		$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		120	210	ns
				80	160	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		90	145	
		$V_{DD} = 10V$		50	75	ns
		$V_{DD} = 15V$		40	60	
C _{IN}	Input Capacitance	(Any Input)		5.0	7.5	pF
C _{PD}	Power Dissipation Capacitance	(Per Gate)		24		pF

Note 4: AC Parameters are guaranteed by DC correlated testing.

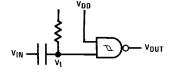
Typical Applications

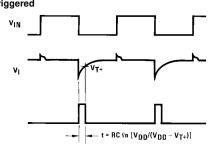
Gated Oscillator

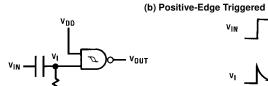

Assume $t_1+t_2>\!> t_{PHL}+t_{PLH}$ then:

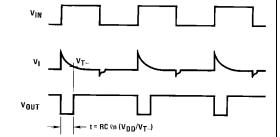
 $t_0 = RC \ \textit{In} \ [V_{DD}/V_T \! - \!]$

 $t_1 = RC \ \textit{I} n \ [(V_{DD} - V_{T}\!\!-\!\!)/(V_{DD} - V_{T}\!\!+\!\!)]$

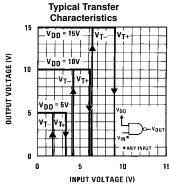

 $t_2 = RC \ln [V_T^{+/V}T^{-}]$

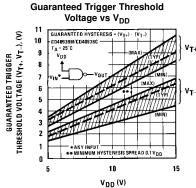

$$f = \frac{1}{t_1 + t_2} = \frac{1}{RC \, \ln \frac{(V_T^+) (V_{DD} - V_T^-)}{(V_T^-)(V_{DD} - V_T^+)}}$$

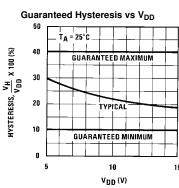


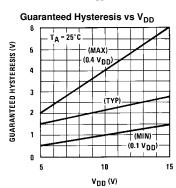

Gated One-Shot

(a) Negative-Edge Triggered

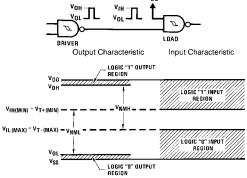


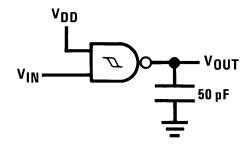


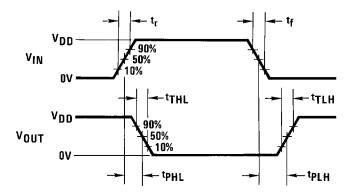


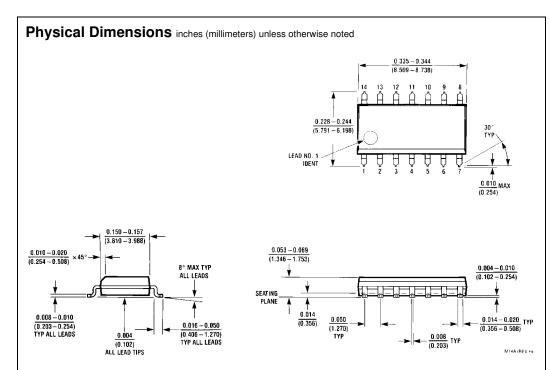


Typical Performance Characteristics



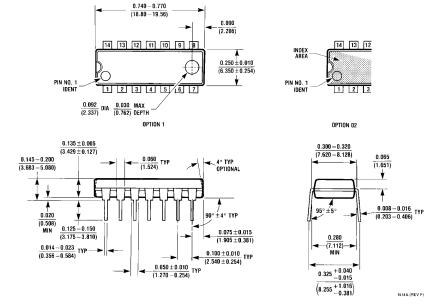



Input and Output Characteristics



$$\begin{split} &V_{NML} = V_{IH(MIN)} - V_{OL} \cong V_{IH(MIN)} = V_{T} +_{(MIN)} \\ &V_{NMH} = V_{OH} - V_{IL(MAX)} \cong V_{DD} - V_{IL(MAX)} = V_{DD} - V_{T} -_{(MAX)} \end{split}$$

AC Test Circuits and Switching Time Waveforms



14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow Package Number M14A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com