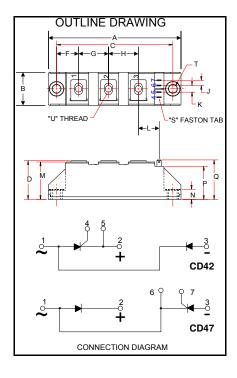
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CD42__90B CD47__90B

POW-R-BLOKTM Dual SCR/Diode Isolated Module 90 Amperes / Up to 1800 Volts

CD42_90B, CD47_90B Dual SCR/Diode Isolated POW-R-BLOK[™] Module 90 Amperes / Up to 1800 Volts

CD42, CD47 Outline Dimensions

•= .=, •=				
Dimension	Inches	Millimeters		
А	3.66	93		
В	0.79	20		
С	3.15	80		
D	1.18	30		
F	0.61	15.5		
G	0.79	20		
Н	0.79	20		
J	0.16	4		
К	0.22	5.7		
L	0.59	15		
М	1.10	28		
Ν	0.31	8		
Р	0.94	24		
Q	1.16	29.4		
S	0.11 x .03	2.8 x 0.8		
Т	0.25	6.4		
U	M5	M5		
Note: Dimensions are for reference only.				

Ordering Information:

Select the complete nine digit module part number from the table below. Example: CD421690B is a 1600Volt, 90 Ampere Dual SCR/Diode Isolated *POW-R-BLOKTM* Module

Туре	Voltage Volts (x100)	Current Amperes	Version
CD42 CD47	08 12 14 16 18	90	В
	10		

Description:

Powerex SCR/Diode Modules are designed for use in applications requiring phase control and isolated packaging. The modules are isolated for easy mounting with other components on a common heatsink. POW-R- $BLOK^{TM}$ has been tested and recognized by the Underwriters Laboratories.

Features:

Features:

- Electrically Isolated Heatsinking
- DBC Alumina (Al₂O₃) Insulator
- Copper Baseplate
- Low Thermal Impedance for Improved Current Capability
- UL Recognized (E78240)

Benefits:

- No Additional Insulation Components Required
- Easy Installation
- No Clamping Components Required
- Reduce Engineering Time

Applications:

- Bridge Circuits
- AC & DC Motor Drives
- Battery Supplies
- Power Supplies
- Large IGBT Circuit Front Ends
- Lighting Control
- Heat & Temperature Control
- Welders

CD42_	_90B
CD47_	_90B

POW-R-BLOKTM Dual SCR/Diode Isolated Module 90 Amperes / Up to 1800 Volts

Absolute Maximum Ratings

Characteristics	Conditions	Symbol		Units
Repetitive Peak Forward and Reverse Blocking Voltage		V _{DRM} & V _{RRM}	up to 1800	V
Non-Repetitive Peak Reverse Blocking Voltage (t < 5 msec)		V_{RSM}	V _{RRM} + 100	V
RMS Forward Current	180° Conduction, T _c =85°C	I _{T(RMS)}	150	А
Average Forward Current	180° Conduction, T _c =85°C	I _{T(AV)}	95	Α
Peak One Cycle Surge Current, Non-Repetitive	60 Hz, 100% V _{RRM} reapplied, T _i =125°C	I _{TSM}	1570	А
	60 Hz, No V _{RRM} reapplied, T _i =125°C	I _{TSM}	1870	А
	60 Hz, No V _{RRM} reapplied, T _i =25°C	I _{TSM}	2100	А
	50 Hz, 100% V _{RRM} reapplied, T _j =125°C	I _{TSM}	1500	А
	50 Hz, No V_{RRM} reapplied, T_j =125°C	I _{TSM}	1785	А
	50 Hz, No V _{RRM} reapplied, T _j =25°C	I _{TSM}	2000	А
I ² t for Fusing for One Cycle, 8.3 milliseconds	8.3 ms, 100% V _{RRM} reapplied, T _j =125°C	l ² t	10,270	A ² sec
	8.3 ms, No V _{RRM} reapplied, T _i =125°C	l ² t	14,520	A ² sec
	8.3 ms, No V _{RRM} reapplied, T _i =25°C	l ² t	18,300	A ² sec
	10 ms, 100% V _{RRM} reapplied, T _i =125°C	l ² t	11,250	A ² sec
	10 ms, No V_{RRM} reapplied, $T_i=125^{\circ}C$	l ² t	15,910	A ² sec
	10 ms, No V_{RRM} reapplied, T _j =25°C	l ² t	20,000	A ² sec
/aximum Rate-of-Rise of On-State Current, Non-Repetitive)	Tj=25°C	di/dt	150	A/µs
Derating Temperature		TJ	-40 to +125	°C
Storage Temperature		T _{stg}	-40 to +125	°C
Max. Mounting Torque, M5 Mounting Screw on			25	inLb.
Ferminals			3	Nm
Nax. Mounting Torque, Module to Heatsink			44 5	inLb. Nm
Nodule Weight, Typical			95	g
			3.35	oz.
/ Isolation @ 25C	50 – 60 Hz, 1 minute	V _{rms}	3000	V
Circuit to base, all terminals shorted together	50 – 60 Hz, 1 second	V _{rms}	3500	V

Information presented is based upon manufacturers testing and projected capabilities.

This information is subject to change without notice.

The manufacturer makes no claim as to the suitability of use, reliability, capability,

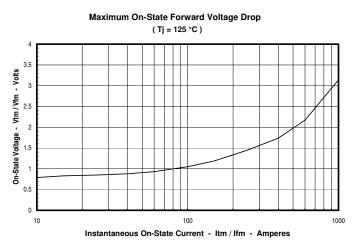
or future availability of this product.

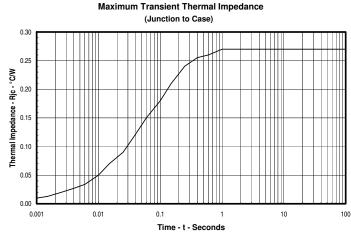
CD42_	_90B
CD47_	_90B

POW-R-BLOKTM Dual SCR/Diode Isolated Module 90 Amperes / Up to 1800 Volts

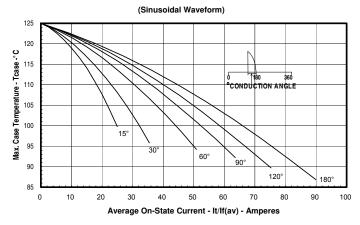
Electrical Characteristics, TJ=25°C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Max.	Units
Repetitive Peak Forward Leakage Current	I _{DRM}	Up to 1800V, T _J =125°C		20	mA
Repetitive Peak Reverse Leakage Current	I _{RRM}	Up to 1800V, T _J =125°C		20	mA
Peak On-State Voltage	V $_{\rm TM}$ / V $_{\rm FM}$	I _{TM /} I _{FM} =300A		1.65	V
Threshold Voltage, Low-level Slope Resistance, Low-level	V _{(TO)1} r _{T1}	$T_{\rm J}$ = 125°C, I = 16.7% x $\pi I_{T(AV)}$ to $\pi I_{T(AV)}$		0.9 2.0	V mΩ
Minimum dV/dt	dV/dt	T _j =125°C, Up to 800V T _j =125°C, 1200 - 1800V	500 1000		V/µs V/µs
Turn-Off Time (Typical)	t _{off}	T _J = 25°C	40 - 100	(Typical)	μs
Gate Trigger Current	I _{GT}	T_j = 25°C, V_D =6V, Resistive Load		150	mA
Gate Trigger Voltage	V _{GT}	T_j = 25°C, V_D =6V, Resistive Load		3.0	Volts
Non-Triggering Gate Voltage	V_{GDM}	$T_j=125^{\circ}C, V_D=V_{DRM}$		0.25	Volts
Non-Triggering Gate Current	I _{GDM}	$T_j=125^{\circ}C, V_D=V_{DRM}$		6	mA
Holding Current	L _H	T _J = 25°C		250	mA
Latching Current	ΙL	T _J = 25°C		600	mA


Thermal Characteristics


Characteristics	Symbol		Max.	Units
Thermal Resistance, Junction to Case DC Operation	$R_{\Theta J-C}$	Per Module, both conducting Per Junction, both conducting	0.14 0.28	°C/W °C/W
Thermal Resistance, Case to Sink Lubricated	$R_{\Theta C-S}$	Per Module	0.1	°C/W

CD42_	_90B
CD47_	_90B


POW-R-BLOKTM Dual SCR/Diode Isolated Module 90 Amperes / Up to 1800 Volts

Maximum On-State Power Dissipation (Sinusoidal Waveform) Max. Power Dissipation Per Junction - Watts 0</td 120° 90° 60° 30° 15° ₩ CONDUCTION ANGLE Average On-State Current - It/If(av) - Amperes

Maximum Allowable Case Temperature

Maximum On-State Power Dissipation (Rectangular Waveform)
 Max. Power Dissipation
 Par. Junction - Watts

 100
 Per Junction - Watts

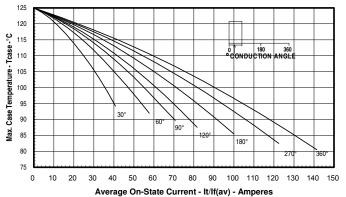
 100
 00
 00

 00
 00
 00

 00
 00
 00

 00
 00
 00

 00
 00
 00


 00
 00
 00

 00
 00
 00

 00
 00
 00

 00
 00
 00
270° 180 360 CONDUCTION ANGLE Average On-State Current - It/If(av) - Amperes

Maximum Allowable Case Temperature (Rectangular Waveform)

