

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

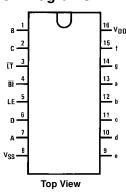
October 1987 Revised January 2004

CD4511BC BCD-to-7 Segment Latch/Decoder/Driver

General Description

The CD4511BC BCD-to-seven segment latch/decoder/ driver is constructed with complementary MOS (CMOS) enhancement mode devices and NPN bipolar output drivers in a single monolithic structure. The circuit provides the functions of a 4-bit storage latch, an 8421 BCD-to-seven segment decoder, and an output drive capability. Lamp test (LT), blanking (BI), and latch enable (LE) inputs are used to test the display, to turn-off or pulse modulate the brightness of the display, and to store a BCD code, respectively. It can be used with seven-segment light emitting diodes (LED), incandescent, fluorescent, gas discharge, or liquid crystal readouts either directly or indirectly.

Applications include instrument (e.g., counter, DVM, etc.) display driver, computer/calculator display driver, cockpit display driver, and various clock, watch, and timer uses.


Features

- Low logic circuit power dissipation
- High current sourcing outputs (up to 25 mA)
- Latch storage of code
- Blanking input
- Lamp test provision
- Readout blanking on all illegal input combinations
- Lamp intensity modulation capability
- Time share (multiplexing) facility
- Equivalent to Motorola MC14511

Ordering Code:

Order Number	Package Number	Package Description
CD4511BCWM	M16B	16-Lead Small Outline Intergrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide
CD4511BCN	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagrams

Segment Identification

Truth Table

Inputs					Outputs									
LE	BI	ΙΤ	D	С	В	Α	а	b	С	d	е	f	g	Display
Х	Х	0	Х	Χ	Χ	Χ	1	1	1	1	1	1	1	В
Х	0	1	Х	Χ	Χ	Χ	0	0	0	0	0	0	0	
0	1	1	0	0	0	0	1	1	1	1	1	1	0	0
0	1	1	0	0	0	1	0	1	1	0	0	0	0	1
0	1	1	0	0	1	0	1	1	0	1	1	0	1	2
0	1	1	0	0	1	1	1	1	1	1	0	0	1	3
0	1	1	0	1	0	0	0	1	1	0	0	1	1	4
0	1	1	0	1	0	1	1	0	1	1	0	1	1	5
0	1	1	0	1	1	0	0	0	1	1	1	1	1	6
0	1	1	0	1	1	1	1	1	1	0	0	0	0	7
0	1	1	1	0	0	0	1	1	1	1	1	1	1	8
0	1	1	1	0	0	1	1	1	1	0	0	1	1	9
0	1	1	1	0	1	0	0	0	0	0	0	0	0	
0	1	1	1	0	1	1	0	0	0	0	0	0	0	
0	1	1	1	1	0	0	0	0	0	0	0	0	0	
0	1	1	1	1	0	1	0	0	0	0	0	0	0	
0	1	1	1	1	1	0	0	0	0	0	0	0	0	
0	1	1	1	1	1	1	0	0	0	0	0	0	0	
1	1	1	Х	Χ	Χ	Χ				*				*

X = Don't Care
*Depends upon the BCD code applied during the 0 to 1 transition of LE.

Display

Absolute Maximum Ratings(Note 1)

Power Dissipation (P_D)

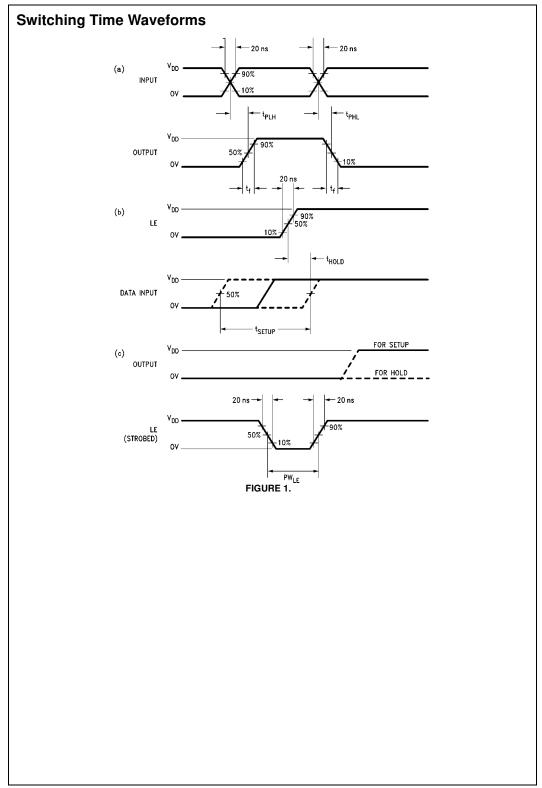
Dual-In-Line 700 mW Small Outline 500 mW

Lead Temperature (T_L)

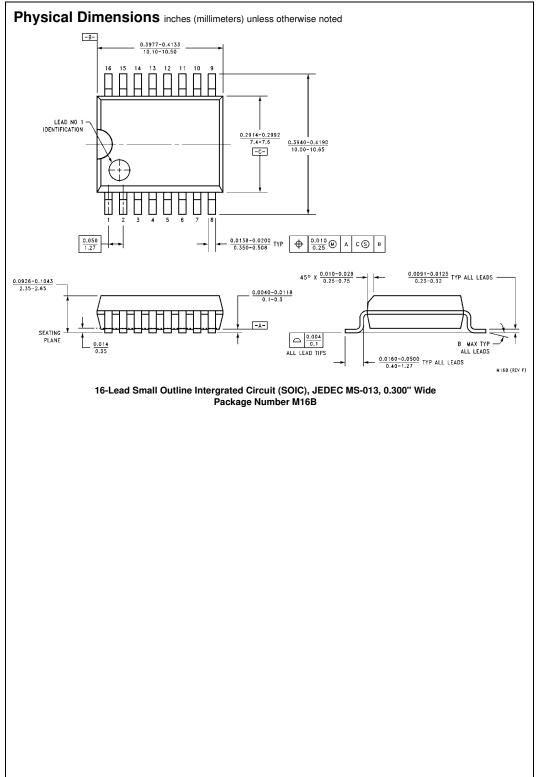
(Soldering, 10 seconds) 260°C

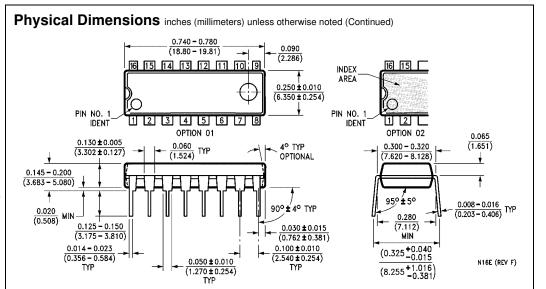
Recommended Operating Conditions

DC Supply Voltage (V_{DD}) 3V to 15V Input Voltage (V_{IN}) 0V to V_{DD} Operating Temperature Range (T_A) -55° C to $+125^{\circ}$ C


Note 1: Devices should not be connected with power on.

DC Electrical Characteristics


Symbol	Parameter	Conditions	–55°C		+25°C			+125°C		Units
Symbol	raiameter		Min	Max	Min	Тур	Max	Min	Max	5
I _{DD}	Quiescent	$V_{DD} = 5V$		5			5		150	
	Supply Current	$V_{DD} = 10V$		10			10		300	μΑ
		$V_{DD} = 15V$		20			20		600	
V _{OL}	Output Voltage	$V_{DD} = 5V$		0.01		0	0.01		0.05	
	Logical "0"	$V_{DD} = 10V$		0.01		0	0.01		0.05	V
	Level	$V_{DD} = 15V$		0.01		0	0.01		0.05	
V _{OH}	Output Voltage	$V_{DD} = 5V$	4.1		4.1	4.57		4.1		
	Logical "1"	$V_{DD} = 10V$	9.1		9.1	9.58		9.1		V
	Level	$V_{DD} = 15V$	14.1		14.1	14.59		14.1		
V _{IL}	LOW Level	$V_{DD} = 5V$, $V_{OUT} = 3.8V$ or 0.5V		1.5		2	1.5		1.5	
	Input Voltage	$V_{DD} = 10V, V_{OUT} = 8.8V \text{ or } 1.0V$		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_{OUT} = 13.8V \text{ or } 1.5V$		4.0		6	4.0		4.0	
V _{IH}	HIGH Level	$V_{DD} = 5V, V_{OUT} = 0.5V \text{ or } 3.8V$	3.5		3.5	3		3.5		
	Input Voltage	$V_{DD} = 10V, V_{OUT} = 1.0V \text{ or } 8.8V$	7.0		7.0	6		7.0		V
		V _{DD} = 15V, V _{OUT} = 1.5V or 13.8V	11.0		11.0	9		11.0		
V _{OH}	Output	V _{DD} = 5V, I _{OH} = 0 mA	4.1		4.1	4.57		4.1		
	(Source) Drive	$V_{DD} = 5V, I_{OH} = 5 \text{ mA}$				4.24				
	Voltage	$V_{DD} = 5V, I_{OH} = 10 \text{ mA}$	3.9		3.9	4.12		3.5		
		$V_{DD} = 5V, I_{OH} = 15 \text{ mA}$				3.94				V
		$V_{DD} = 5V, I_{OH} = 20 \text{ mA}$	3.4		3.4	3.75		3.0		
		$V_{DD} = 5V, I_{OH} = 25 \text{ mA}$				3.54				
		$V_{DD} = 10V, I_{OH} = 0 \text{ mA}$	9.1		9.1	9.58		9.1		
		$V_{DD} = 10V, I_{OH} = 5 \text{ mA}$				9.26				
		$V_{DD} = 10V, I_{OH} = 10 \text{ mA}$	9.0		9.0	9.17		8.6		
		V _{DD} = 10V, I _{OH} = 15 mA				9.04				V
		V _{DD} = 10V, I _{OH} = 20 mA	8.6		8.6	8.9		8.2		
		V _{DD} = 10V, I _{OH} = 25 mA				8.75				
		$V_{DD} = 15V, I_{OH} = 0 \text{ mA}$	14.1		14.1	9.58		14.1		
		$V_{DD} = 15V, I_{OH} = 5 \text{ mA}$				14.27				
		$V_{DD} = 15V, I_{OH} = 10 \text{ mA}$	14.0		14.0	14.17		13.6		
		V _{DD} = 15V, I _{OH} = 15 mA				14.07				V
		V _{DD} = 15V, I _{OH} = 20 mA	13.6		13.6	13.95		13.2		
		V _{DD} = 15V, I _{OH} = 25 mA				13.80				
I _{OL}	LOW Level	V _{DD} = 5V, V _{OL} = 0.4V	0.64		0.51	0.88		0.36		
	Output Current	$V_{DD} = 10V, V_{OL} = 0.5V$	1.6		1.3	2.25		0.9		mA
		$V_{DD} = 15V, V_{OL} = 1.5V$	4.2		3.4	8.8		2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.1		-10 ⁻⁵	-0.1		-1.0	
·IN		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.1		1.0	μΑ


Symbol		emperature coefficient for all value Conditions	Min	Тур	Max	Un
C _{IN}	Input Capacitance	V _{IN} = 0		5.0	7.5	IIO
t _r	Output Rise Time	V _{DD} = 5V		40	80	
1	(Figure 1a)	V _{DD} = 10V		30	60	ns
	(3)	$V_{DD} = 15V$		25	50	
t _f	Output Fall Time	$V_{DD} = 5V$		125	250	
1	(Figure 1a)	V _{DD} = 10V		75	150	ns
	(· ·ga·· - · - ·	V _{DD} = 15V		65	130	
t _{PLH}	Turn-Off Delay Time	$V_{DD} = 5V$		640	1280	
TEN	(Data) (Figure 1a)	V _{DD} = 10V		250	500	ns
	(= 4.44) (* 194.0 * 14)	$V_{DD} = 15V$		175	350	
t _{PHL}	Turn-On Delay Time	$V_{DD} = 5V$		720	1440	
	(Data) (Figure 1a)	V _{DD} = 10V		290	580	ns
	(3, (3 ,	V _{DD} = 15V		195	400	
t _{PLH}	Turn-Off Delay Time	V _{DD} = 5V		320	640	
	(Blank) (Figure 1a)	V _{DD} = 10V		130	260	ns
	, , , ,	V _{DD} = 15V		100	200	
t _{PHL}	Turn-On Delay Time	V _{DD} = 5V		485	970	
	(Blank) (Figure 1a)	V _{DD} = 10V		200	400	ns
	, , , ,	V _{DD} = 15V		160	320	
t _{PLH}	Turn-Off Delay Time	V _{DD} = 5V		313	625	
	(Lamp Test) (Figure 1a)	V _{DD} = 10V		125	250	ns
		V _{DD} = 15V		90	180	
t _{PHL}	Turn-On Delay Time	V _{DD} = 5V		313	625	
	(Lamp Test) (Figure 1 a)	$V_{DD} = 10V$		125	250	ns
		$V_{DD} = 15V$		90	180	
t _{SETUP}	Setup Time	$V_{DD} = 5V$	180	90		
	(Figure 1 b)	$V_{DD} = 10V$	76	38		ns
		$V_{DD} = 15V$	40	20		
t _{HOLD}	Hold Time	V _{DD} = 5V	0	-90		
	(Figure 1b)	$V_{DD} = 10V$	0	-38		ns
		$V_{DD} = 15V$	0	-20		
PW _{LE}	Minimum Latch Enable	V _{DD} = 5V	520	260		
	Pulse Width (Figure 1 c)	$V_{DD} = 10V$	220	110		ns
		V _{DD} = 15V	130	65		

Note 2: AC Parameters are guaranteed by DC correlated testing.

Typical Applications Light Emitting Diode (LED) Readout COMMON ANODE LED COMMON CATHODE LED Liquid Crystal (LC) Readout Gas Discharge Readout EXCITATION (SQUARE WAVE, VSS TO VDD) APPROPRIATE VOLTAGE ٧ss Direct DC drive of LC's not recommended for life of LC readouts. Incandescent Readout Fluorescent Readout $v_{D\,D}$ DIRECT (Low Brightness) FILAMENT SUPPLY V_{SS} OR APPROPRIATE VOLTAGE BELOW V_{SS} **A filament pre-warm resistor is recommended to reduce filament thermal shock and increase the effective cold resistance of the filament.

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com