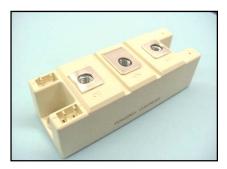
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

OUTLINE DRAWING

CD63__15B Dual SCR Isolated POW-R-BLOK[™] Module 150 Amperes / Up to 1800 Volts

CD63_15B Outline Dimensions

Dimension	Inches	Millimeters	
A	3.70	94	
В	1.34	34	
С	1.18	30	
D	3.15	80	
E	0.67	17	
F	0.91	23	
G	0.51	13	
Н	0.35	8.3	
J	M6	M6	
К	0.26	6.4	
М	.020	5	
Ν	0.28	6	
Р	1.06	27	
Q	1.14	29	
R	0.03	0.8	
S	0.11	2.8	
Note: Dimensions are for reference only.			

Ordering Information:

Select the complete nine digit module part number from the table below. Example: CD631615B is a 1600Volt, 150 Ampere Dual SCR Isolated $POW-R-BLOK^{TM}$ Module

-			
Туре	Voltage Volts (x100)	Current Amperes (x 10)	Version
CD63	08 12 14 16 18	15	В

CD63__15B

POW-R-BLOK[™] Dual SCR Isolated Module 150 Amperes / Up to 1800 Volts

Description:

Powerex Dual SCR Modules are designed for use in applications requiring phase control and isolated packaging. The modules are isolated for easy mounting with other components on a common heatsink. *POW-R-BLOK*TM has been tested and recognized by the Underwriters Laboratories.

Features:

- Electrically Isolated Heatsinking
- DBC Alumina (Al₂O₃) Insulator
- Glass Passivated Chips
- Metal Baseplate
- Low Thermal Impedance for Improved Current Capability
- Quick Connect Gate Terminal with Provision for Keyed Mating Plug
- UL Recognized (E78240)

Benefits:

- No Additional Insulation Components Required
- Easy Installation
- No Clamping Components Required
- Reduce Engineering Time

Applications:

- Bridge Circuits
- AC & DC Motor Drives
- Battery Supplies
- Power Supplies
- Large IGBT Circuit Front Ends
- Lighting Control
- Heat & Temperature Control
- Welders

CD63__15B

Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

POW-R-BLOK[™] Dual SCR Isolated Module 150 Amperes / Up to 1800 Volts

Absolute Maximum Ratings

Characteristics	Conditions	Symbol		Units
Repetitive Peak Forward and Reverse Blocking Voltage		V _{DRM} & V _{RRM}	up to 1800	V
Non-Repetitive Peak Reverse Blocking Voltage (t < 5 msec)		V_{RSM}	V _{RRM} + 100	V
RMS Forward Current	180° Conduction, T _c =85°C	I _{T(RMS)}	235	А
Average Forward Current	180° Conduction, T _C =82°C	I _{T(AV)}	160	А
	180° Conduction, T_c =85°C	I _{T(AV)}	150	А
Peak One Cycle Surge Current, Non-Repetitive	60 Hz, 100% V _{RRM} reapplied, T _j =125°C	I _{TSM}	3700	А
	60 Hz, No V _{RRM} reapplied, T _i =125°C	I _{TSM}	5250	Α
	50 Hz, 100% V _{RRM} reapplied, T _i =125°C	I _{TSM}	3520	A
	50 Hz, No V _{RRM} reapplied, T _i =125°C	I _{TSM}	5000	A
Peak Three Cycle Surge Current, Non-Repetitive	60 Hz, 100% V _{RRM} reapplied, T _i =125°C	I _{TSM}	2970	А
	50 Hz, 100% V_{RRM} reapplied, T _j =125°C	I _{TSM}	2830	А
Peak Ten Cycle Surge Current, Non-Repetitive	60 Hz, 100% V _{RBM} reapplied, T _i =125°C	I _{TSM}	2335	А
	50 Hz, 100% V _{RRM} reapplied, T _j =125°C	I _{TSM}	2220	А
² t for Fusing for One Cycle	8.3 ms, 100% V _{RRM} reapplied, T _i =125°C	l ² t	57,040	A ² sec
	8.3 ms, No V _{RRM} reapplied, T _i =125°C	l ² t	114,840	A ² sec
	10 ms, 100% V_{RRM} reapplied, T _i =125°C	l ² t	61,950	A ² sec
	10 ms, No V_{RRM} reapplied, T _j =125°C	l ² t	125,000	A ² sec
Maximum Rate-of-Rise of On-State Current,	T _i =125°C,	di/dt	200	A/µs
Non Repetitive	V _D = V _{DRM (Rated)} , I _{TM} =400A ,			
	I _G =0.5 A, Τ _r < 0.25μs, t _p > 6μs			
Peak Gate Power Dissipation	T _p < 5 ms, T _j = 125°C	P_{GM}	12	W
Average Gate Power Dissipation	F = 50 Hz, T _j = 125°C	$P_{G(AV)}$	3	W
Peak Forward Gate Current	T _p < 5 ms, T _j = 125°C	I _{GFM}	3	А
Peak Reverse Gate Voltage	T _p < 5 ms, T _j = 125°C	V _{GRM}	10	V
Operating Temperature		TJ	-40 to +125	°C
Storage Temperature		T _{stg}	-40 to +125	°C
Max. Mounting Torque, M6 Mounting Screw on			35 - 50	inLb.
Terminals Max. Mounting Torque, Module to Heatsink			<u>4 - 6</u> 35 - 50	Nm inLb.
			4 - 6	Nm
Module Weight, Typical			165	g
			0.36	OZ.
V Isolation	Tj= 25°C, 1 second	V _{rms}	3600	V
	Tj= 25°C, 1 minute	Vrms	3000	V

CD63__15B

Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

POW-R-BLOK[™] **Dual SCR Isolated Module** 150 Amperes / Up to 1800 Volts

Electrical Characteristics, TJ=25°C unless otherwise specified

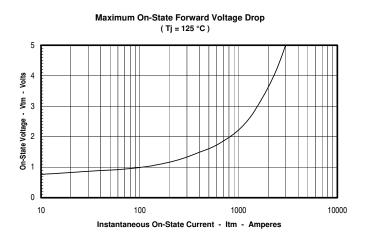
Characteristics	Symbol	Test Conditions	Min.	Max.	Units
Repetitive Peak Forward Leakage Current	I _{DRM}	Up to 1800V, T _J =125°C		50	mA
Repetitive Peak Reverse Leakage Current	I _{RRM}	Up to 1800V, T _J =125°C		50	mA
Peak On-State Voltage	V _{TM}	I _{TM} =500A		1.6	V
Threshold Voltage, Low-level Slope Resistance, Low-level	V _{(TO)1} r _{T1}	$T_{\rm J}$ = 125°C, I = 16.7% x $\pi I_{T(AV)}$ to $\pi I_{T(AV)}$		0.85 1.5	V mΩ
Minimum dV/dt	dV/dt	Exponential to 2/3 V_{DRM} T _j =125°C, Gate Open	1000		V/µs
Turn-Off Time (Typical)	t _{off}	$T_J = 125^{\circ}C$, $I_T = 300A$, $R_{gk} = 100\Omega$ $V_r = 50V$, -dl/dt=15 A/µs Re-Applied dV/dt = 20V/µs, Linear to 2/3 V _{DRM}	50 - 200	(Typical)	μs
Gate Trigger Current	I _{GT}	T_j = 25°C, V_D =6V, R_a =1 Ω , Resistive Load		150	mA
Gate Trigger Voltage	V _{GT}	T_j = 25°C, V _D =6V, R _a =1Ω, Resistive Load		2.0	Volts
Non-Triggering Gate Voltage	V_{GDM}	$T_j=125^{\circ}C, V_D=V_{DRM}$		0.25	Volts
Non-Triggering Gate Current	I _{GDM}	$T_j=125^{\circ}C, V_D=V_{DRM}$		10	mA
Holding Current	I _H	T _J =25°C	150	(Typical)	mA
Latching Current	١	T _J =25°C	300	(Typical)	mA

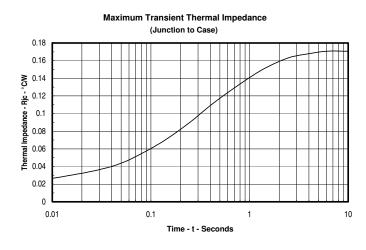
Thermal Characteristics

Characteristics	Symbol		Max.	Units
Thermal Resistance, Junction to Case DC Operation	$R_{\Theta J-C}$	Per Module, both conducting Per Junction, both conducting	0.085 0.17	°C/W °C/W
Thermal Resistance, Case to Sink Lubricated	$R_{\Theta C-S}$	Per Module	0.05	°C/W

Information presented is based upon manufacturers testing and projected capabilities.

This information is subject to change without notice. The manufacturer makes no claim as to the suitability of use, reliability, capability,

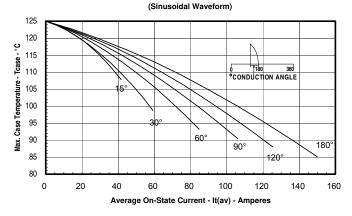

or future availability of this product.

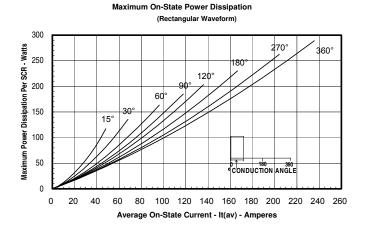


CD63__15B

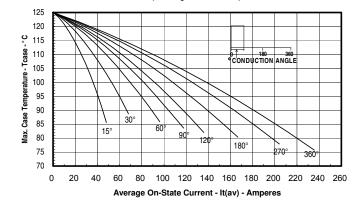
Powerex, Inc., Hillis Street, Youngwood, Pennsylvania 15697 (724) 925-7272 www.pwrx.com

POW-R-BLOK[™] **Dual SCR Isolated Module** 150 Amperes / Up to 1800 Volts





Maximum On-State Power Dissipation (Sinusoidal Waveform) 250 Maximum Power Dissipation Per SCR - Watts 180°, 200 90° 60 150 30 15 100 CONDUCTION ANGLE 50 0 160 0 20 40 60 80 100 120 140


Average On-State Current - It(av) - Amperes

Maximum Allowable Case Temperature

Maximum Allowable Case Temperature (Rectangular Waveform)

