

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Flexible 0-10V Dimming Solution

CDM10VD

CDM10VD-2

CDM10VD-3

CDM10VD-4

Quality Requirement Category: Standard

Features

- Simplest 0-10 V design on the market. CDM10VD-Series comes with the following default settings:
 - Minimum duty cycle 5% or 10% @1V
 - 1kHz PWM frequency
 - 120μA Dimmer/Resistor Bias current
 - 9.4 V dimming voltage for 100%
 - 1mA or 5mA output current for driving an optocoupler
- Wide input V_{cc} range from 11 to 25 V plus extended range down to 6V
- Minimum 200mV dimming hysteresis between dimming to OFF and to ON
- Variable Frequency PWM Input Mode
- Replaces many external components with a single chip reducing BOM and PCB space
- Minimum variation from device to device

Applications

- LED Drivers needing 0-10 V Dimming Circuits
- Industrial and Commercial Dimmable Applications: Luminaires, Troffers, Downlights, Sconces, Undercabinet, Office Lighting, Signage applications, Dali-applications

Product Type	Output current / min. Duty Cycle	Package
CDM10VD	5 mA / 5 %	SOT23-6
CDM10VD-2	5 mA / 10 %	SOT23-6
CDM10VD-3	1 mA / 5 %	SOT23-6
CDM10VD-4	1 mA / 10 %	SOT23-6

Description

CDM10V is a fully integrated 0-10 V dimming interface IC and comes in a SOT23-6 package to cover space requirements on small PCB designs.

The device is targeted for various dimming applications in lighting. The IC can be used to transmit analog voltage based signals from a 0-10 V dimmer or a potentiometer or a PWM input of a lighting controller IC, transformed to a 5 mA/1 mA current based fixed frequency PWM signal, to directly drive an external optocoupler. To avoid flickering when dimming, the light up and the light down threshold has a minimum implemented hysteresis of 200mV.

It replaces many components in a traditional solution and reduces BOM and PCB space significantly. The CDM10VD-Series ICs outputs a 0 - 100% PWM current signal at a frequency of 1 kHz with an amplitude value of 1mA or 5 mA.

Flexible 0-10V Dimming Solution

Description

The duty cycle of the PWM signal can be selected to be either 5% or 10%. Dim-to-off feature is fully supported with a minimum hysteresis of 200 mV between dim-to-dark and dim-to-light.

Embedded digital signal processing maintains minimum variations from device to device.

Flexible 0-10V Dimming Solution

Table of contents

Table of contents

	Features	1
	Applications	
	Description	
	Table of contents	
1	Block Diagram	
2	Pin Configuration	
3	Functional Description	
4	Electrial Characteristics and Parameters	11
5	Package Dimensions	14
6	References	16
	Revision History	16
	Trademarks	17

Block Diagram

1 Block Diagram

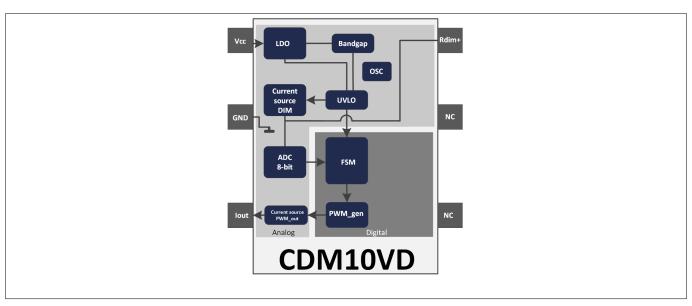


Figure 1 Block Diagram of the CDM10VD

2 Pin Configuration

Table 1 Pin configutation

Pin	Name	Function
1	V _{CC}	Input supply voltage
2	GND	GND
3	l _{out}	PWM output current
4	NC	GND
5	NC	GND
6	R _{dim+}	Dimmer current output /Voltage sense

Functional Description

3 Functional Description

Typical Application Circuit

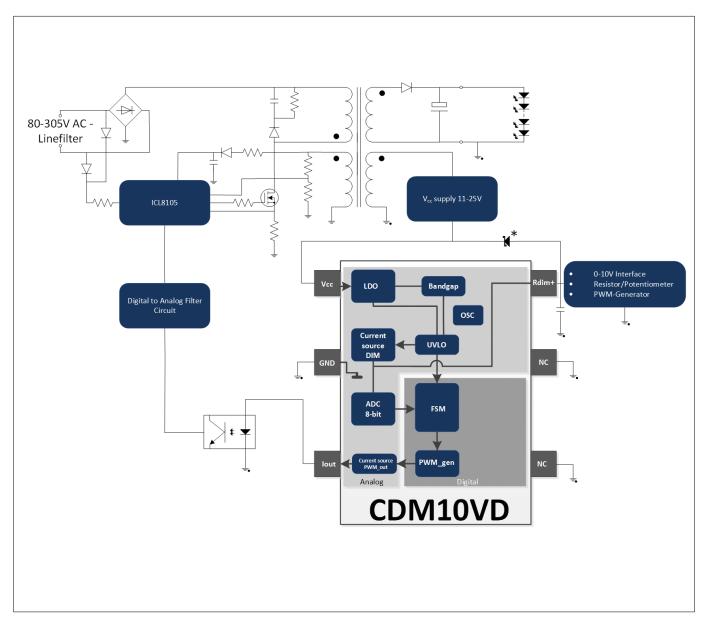


Figure 2 Typical Application Circuit

Note:

The Diode marked with * is for the protection of the $R_{\text{dim+}}$ -Pin when active dimming is used. This is because the voltage on this Pin is not allowed to be higher than V_{CC} +0.5V. It is advised to use a low leakage, low reverse current Schottky-Diode in order to not influence the dimming performance (e.g. MMSD301T1G).

Note:

The capacitor connected to the $R_{\text{dim+}}$ -Pin reduces the amount of coupled noise to the dimming signal. The size of this capacitance should be in the range of 2.2 - 10 nF (typ. 4.7 nF), where a small capacitor allows steeper edges of the dimming signal, a larger capacitor enhances the noise reduction.

Flexible 0-10V Dimming Solution

Functional Description

Recommended cooling area

In order to guarantee the full functionality of the CDM10VD device, the required cooling area has to be selected according to the graph in *Figure 3*.

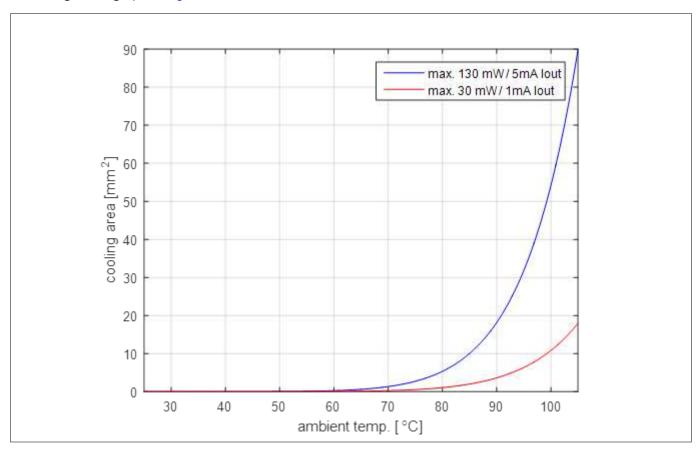


Figure 3 Cooling area over ambient temperature CDM10VD

Flexible 0-10V Dimming Solution

Functional Description

Dimming Characteristic

Table 2 PWM Output current referring to R_{dim+}-Pin nominal Voltage

R _{dim+}	l _{out}
<0.5V (dim-to-dark)	OFF (0%)
0.5V1V (dim-to-dark)	Min duty cycle 5%/10%
<0.7V (dim-to-bright)	OFF (0%)
0.7V1V (dim-to-bright)	Min duty cycle 5%/10%
1V9.4V	Min duty cycle (@ 1V)100% (@ 9.4V)
>9.4V	Always active (100%)

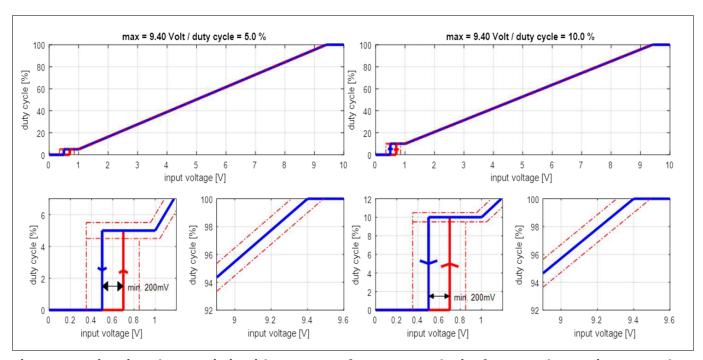


Figure 4 Dimming Characteristic with +-1% error for start- & endpoint for 5% and 10% Min Duty Cycle

Table 3 Dim2bright and dim2off thresholds

Dim2off		Dim2bright			Hystere		
min	nom	max	min nom max			min	
0,35	0,5	0,65	0,55	0,7	0,85		200mV

The CDM10VD device has two operating ranges, as seen in *Figure 5*, in regards of the supply voltage V_{CC} . The following conditions must be taken into consideration:

- between 11 and 25V the device is fully operable and all parameters are in specification
- between 6 and 11V the device is functional but the parameters might be out of specification

The purpose of the extended V_{CC} range is to use it during the off state of the LED. Here the secondary side supply voltage can be lowered down to 6V, which is sufficient to keep the CDM10VD device functional. The System has to be designed in an way that the remaining power, which is transferred to the output, is low enough so the LEDs' doesn't emit any visible light, but sufficient to keep the CDM10VD in this extended V_{CC} range. If a voltage on the R_{dim+} -pin is sensed, which is higher than the dim2bright threshold, the system powers

Flexible 0-10V Dimming Solution

Functional Description

the output to the normal operating voltage. This should also bring the V_{CC} supply voltage to the normal operating area of the CDM10VD device where all parameters are in specification again.

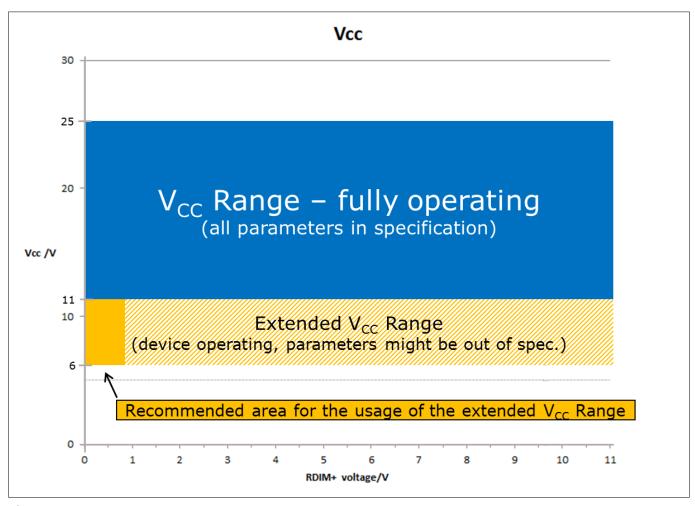


Figure 5 Extended V_{CC} range

Flexible 0-10V Dimming Solution

Functional Description

Variable Frequency PWM Input Mode

CDM10VD device can be operated in a 'frequency conversion input mode'. In this mode the PWM input signal on R_{dim+} with frequencies between 100 Hz and 3 kHz will be converted to 1 kHz signal on I_{out} . The duty cycle between input and output signals remain at the same level. The configuration and conditions are described below.

Variable frequency mode conditions

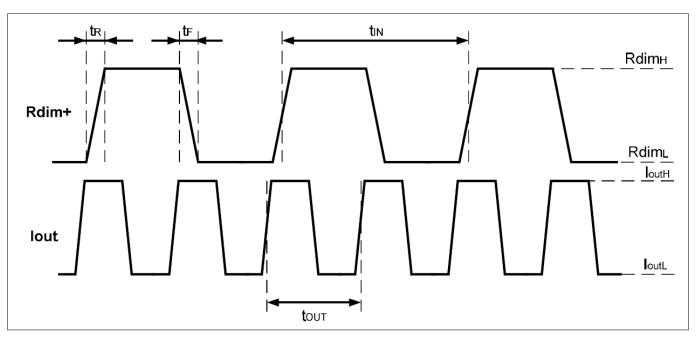


Figure 6 Timing for the Variable Frequency PWM Input Mode

Table 4 Conditions for the Variable Frequency PWM Input Mode

Condition	Name	Min	Nom	Max
R _{dimH}	R _{dim+} High Value	9.6 V		V _{CC} +0,5V
R _{dimL}	R _{dim+} Low Value	-0.5 V	0.0 V	0.5 V
I _{outH}	I _{out} High Value		R _{lout} * I _{lout} ¹	
I _{outL}	I _{out} Low Value		0.0 V	
t _{IN}	Period input signal	0.33 ms	1.0 ms	10.0 ms
t _{OUT}	Period ouput signal	1.0 ms - 5 %	1.0 ms	1.0ms + 5 %
t _R	Rising edge time			1.8 μs
t _F	Falling edge time			1.8 μs

Note: ¹ R_{lout} is the resistance connected between the I_{out} and the GND-PIN. I_{out} is 1 mA or 5 mA dependent on the CDM10VD version.

Once the CDM10VD detects the frequency in the range 100 Hz and 3 kHz on the R_{dim+} input the internal FSM will lock after min eight input signal periods. In this time the input R_{dim+} signal is provided to the I_{out} directly, see *Figure 7*.

Functional Description

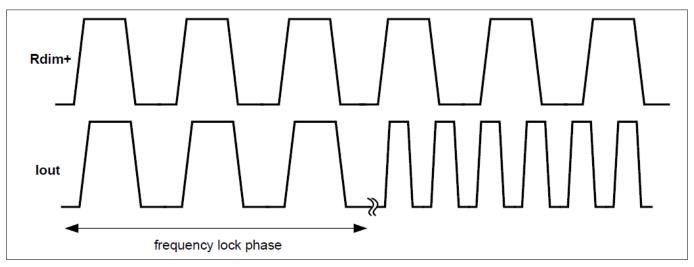


Figure 7 Lock phase default mode

Backup mode

To avoid the I_{out} behavior during lock phase in default mode, there is an additional option described below. In normal operation Pin 5 has to be connected to the GND level. In this mode the CDM10VD selects automatically between the standard hysteresis mode and the frequency conversion mode depending on the input signal on R_{dim+} . Leaving the Pin 5 unconnected, the CMD10VD device will switch directly to the frequency conversion mode and the I_{out} pin will be tied to GND during the frequency lock phase, see *Figure 8*. In this mode the standard hysteresis mode cannot be used.

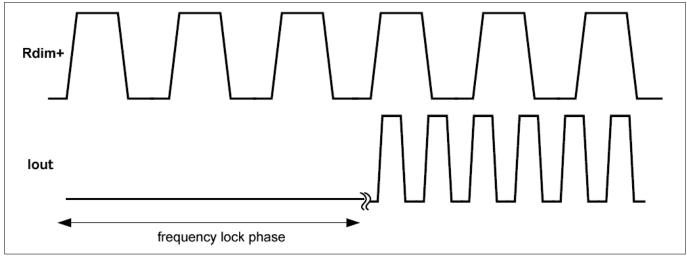


Figure 8 Lock phase backup mode

infineon

Electrial Characteristics and Parameters

4 Electrial Characteristics and Parameters

Table 5 Absolute Maximum Ratings

Pin	Name	Val	ues	Unit	Note or Test Condition
		Min.	Max.		
1	V _{cc}	0	26	V	
2	GND	0	0	V	Point of reference
3	l _{out}	-0.5	3.63	V	Depending on the optocupler voltage @ 5mA or 1mA
4	NC	-0.25	0.1	V	Connect to GND during operation
5	NC	-0.25	0.1	V	During operation Connect to GND
6	R _{dim+}	-0.5	V _{CC} + 0.5	V	An applied voltage above max value leads to the destruction of the device. Also valid if V _{CC} is 0 V.

Absolute maximum ratings (*Table 5*) are defined as ratings which when being exceeded may lead to destruction of the integrated circuit. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. These values are not tested during production test.

Table 6 Electrical Characteristics

Parameter	Symbol		Values		Unit	Note or Test
		Min.	Тур.	Max.		Condition
Input Voltage	V _{in}	11		25	V	Operating Voltage
Extended Input Voltage	V _{ext}	6		10.9	V	Parameters might be out of spec.
Junction Temperature Range	TJ	-40		135	°C	
Ambient Temperature Range	T _A	-40		105	°C	All limits guaranteed
Startup Ambient Temperature Range	T _A	-55		105	°C	IC startup guaranteed
Current Consumption	I _{CC}			1	mA	Current Consumption of the IC for self supply
Output Current for Dimmer	I _{dim}	-5%	120	+5%	μА	Current flow out of R _{dim+} -Pin
PWM frequency	f _{PWM}	-5%	1000	+5%	Hz	
Dimming accuracy		-1		+1	%	With active dimming incl. all variations

Flexible 0-10V Dimming Solution

Electrial Characteristics and Parameters

 Table 6
 Electrical Characteristics (continued)

Parameter	Symbol	Values			Unit	Note or Test
		Min.	Тур.	Max.		Condition
Wake-up Time	t _w			40	μs	Time from V _{CC} = 6 V to first output current
ESD capability HBM	V _{HAB}			1500	V	according to ANSI/ESDA/JEDEC JS-001
ESD capability CDM	V _{CDM}			500		according to JESD22 C101

Table 7 Electrical Characteristics for CDM10VD

Parameter	Symbol	bol Values				Note or Test
		Min.	Тур.	Max.		Condition
Output Current for Optocoupler	l _{out}	4.5	5	5.5	mA	
Min. duty cycle	PW _{PWM}	-0.5	5	+0.5	%	Percentage of the pulse width
Power Dissipation	P _{tot}	8.25 @ 5% duty cycle;	130 @ 100% duty cycle 83.2 @ 70%	160 @ 100% PWM & 25 V _{in}	mW	Dimmer current included
			duty cycle 54 @ 50% duty cycle			
			30.4 @ 30% duty cycle			

Table 8 Electrical Characteristics for CDM10VD-2

Parameter	Symbol	l Values				Note or Test
		Min.	Тур.	Max.		Condition
Output Current for Optocoupler	l _{out}	4.5	5	5.5	mA	
Min. duty cycle	PW _{PWM}	-0.5	10	+0.5	%	Percentage of the pulse width
Power Dissipation	P _{tot}	11 @ 10% duty cycle	130 @ 100% duty cycle	160 @ 100% PWM & 25 V _{in}	mW	Dimmer current included
			83.2 @ 70% duty cycle			
			54 @ 50% duty cycle			
			30.4 @ 30% duty cycle			

Flexible 0-10V Dimming Solution

Electrial Characteristics and Parameters

 Table 9
 Electrical Characteristics for CDM10VD-3

Parameter	Symbol	Values			Unit	Note or Test
		Min.	Тур.	Max.		Condition
Output Current for Optocoupler	l _{out}	0.9	1	1.1	mA	
Min. duty cycle	PW _{PWM}	-0.5	5	+0.5	%	Percentage of the pulse width
Power Dissipation	P _{tot}	2.3 @ 5% duty cycle	30 @ 100% duty cycle 21 @ 70% duty cycle 15 @ 50% duty cycle 9 @ 30% duty cycle	53 @ 100% PWM & 25 V _{in}	mW	Dimmer current included

Table 10 Electrical Characteristics for CDM10VD-4

Parameter	Symbol	Values			Unit	Note or Test
		Min.	Тур.	Max.		Condition
Output Current for Optocoupler	l _{out}	0.9	1	1.1	mA	
Min. duty cycle	PW _{PWM}	-0.5	10	+0.5	%	Percentage of the pulse width
Power Dissipation	P _{tot}	2.6 @ 10% duty cycle	30 @ 100% duty cycle 21 @ 70% duty cycle 15 @ 50% duty cycle 9 @ 30% duty cycle	53 @ 100% PWM & 25 V _{in}	mW	Dimmer current included

Note: Please contact Infineon if you are in need of an inverted output current.

Package Dimensions

5 Package Dimensions

Package Drawings

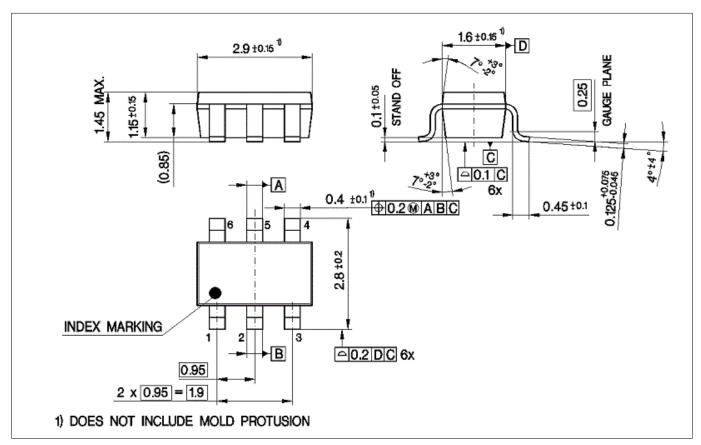


Figure 9 Package Drawings

Package Dimensions

Footprint

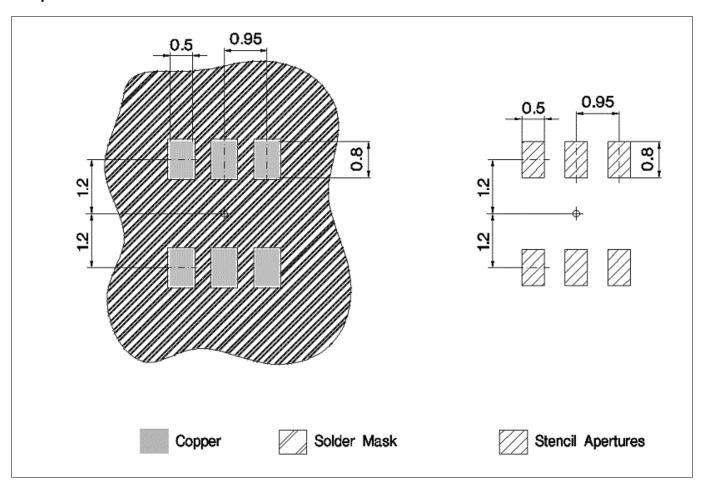


Figure 10 Footprint

Packing Description

Packing Type

Tape and Reel Ø Reel: 180 Pieces / Reel: 3000 Reels / Box: 1

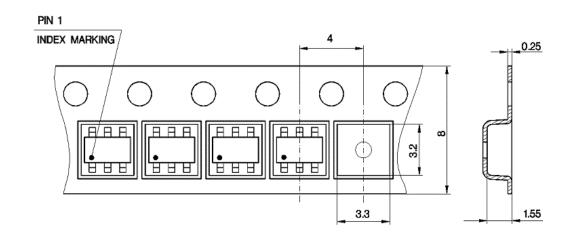


Figure 11 Packing

Flexible 0-10V Dimming Solution

References

6 References

Related information

Please refer to the Datasheet of the CDM10V for further application related information.

Revision History

Major changes since previous revision

Reference	Description			
v1.0	First release			
v1.1	Corrected value for min power dissipation in table 10.			

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2017-08-02 Published by Infineon Technologies AG 81726 Munich, Germany

© 2017 Infineon Technologies AG All Rights Reserved.

Do you have a question about any aspect of this document?

 ${\bf Email: erratum@infineon.com}$

Document reference IFX-jml1470032847985

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury