imall

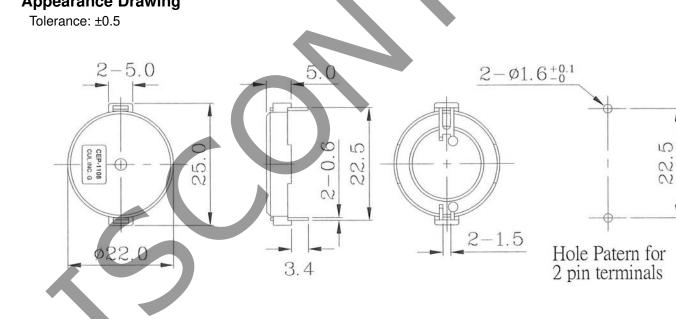
Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

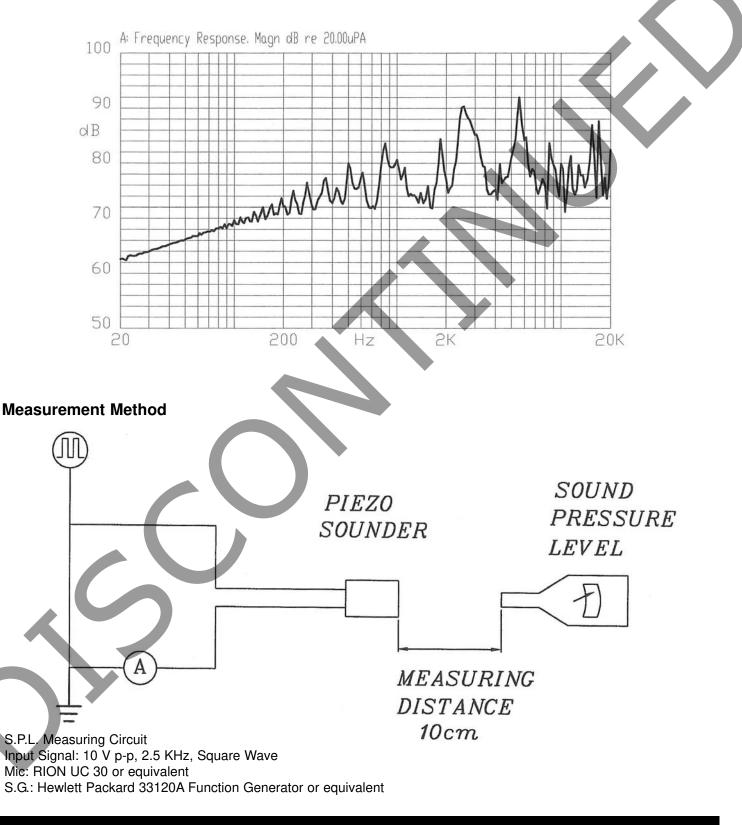

Description: piezo audio transducer

Date: 9/22/2006 Unit: mm Page No: 1 of 5

RoHS

Operating voltage	50 Vp-p max.	
Current consumption	7 mA max.	at 10 Vp-p, square wave, 2.5 KHz
Sound pressure level	80 db min.	at 10 cm / 10 Vp-p, square wave, 2.5 KHz
Electrostatic capacitance	18,000 pF ±30%	at 120 Hz / 1 V
Operating temperature	-30 ~ +85° C	
Storage temperature	-40 ~ +95° C	
Dimensions	ø22.0 x H5.0 mm	
Weight	1.5 g max.	
Material	ABS UL-94 1/16" HB Hig	gh Heat (Black)
Terminal	Pin type (Au Plating)	
RoHS	yes	


Appearance Drawing



Description: piezo audio transducer

Date: 9/22/2006 Unit: mm Page No: 2 of 5

Phone: 800.275.4899 Fax: 503.612.2381 www.cui.com 20050 SW 112th Ave. Tualatin, OR 97062

Description: piezo audio transducer

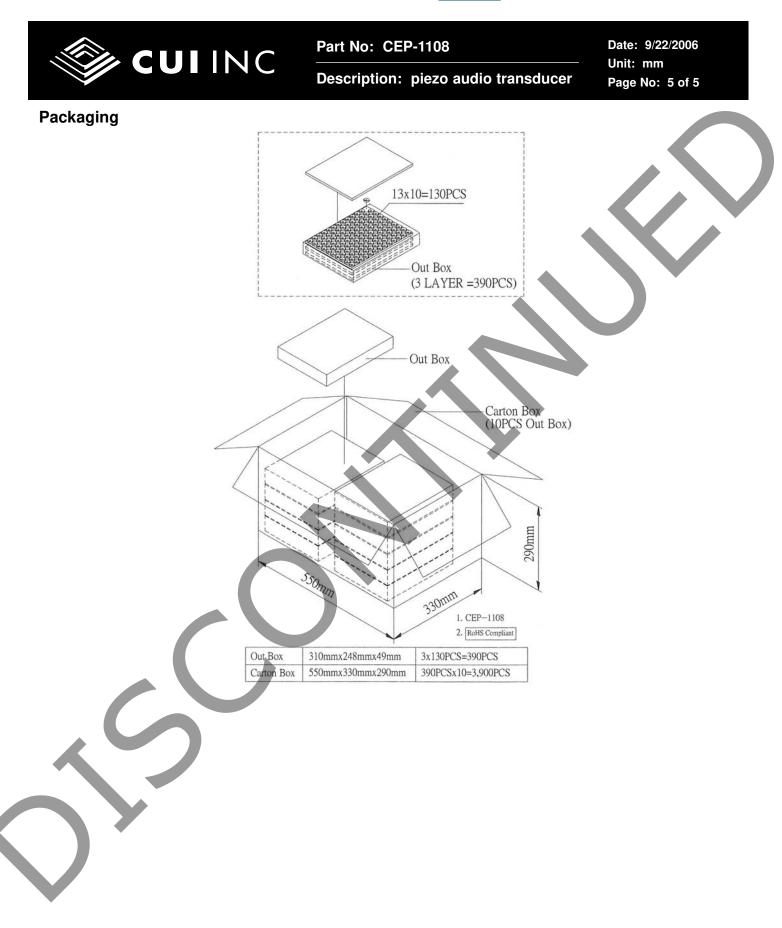
Date: 9/22/2006 Unit: mm Page No: 3 of 5

Mechanical Characteristics

Item	Test Condition	Evaluation Standard
Solderability ¹	Lead terminals are immersed in rosin for	90% min. of the lead terminals
	5 seconds and then immersed in solder bath	will be wet with solder.
	of 270 \pm 5°C for 3 \pm 1 seconds.	(Except the edge of the terminal)
Soldering Heat Resistance	Lead terminals are immersed up to 1.5mm from	
-	buzzer's body in solder bath of 300 ±5°C for	No interference in operation.
	3 ±0.5 or 260 ±5°C for 10 ±1 seconds.	
Terminal Mechanical Strength	For 10 seconds, the force of 9.8N (1.0kg) is	No damage or cutting off.
	applied to each terminal in axial direction.	
Vibration	The buzzer should be measured after applying	The value of oscillation
	a vibration amplitude of 1.5 mm with 10 to	frequency/current consumption
	55 Hz band of vibration frequency to each of	should be ±10% of the initial
	the 3 perpendicular directions for 2 hours.	measurements. The SPL should
Drop Test	The part will be dropped from a height of	be within ±10dB compared with
	75 cm onto a 40 mm thick wooden board 3	the initial measurement.
	times in 3 axes (X, Y, Z) for a total of 9 drops.	

Notes: 1. Not recommended for wave soldering

Environment Test


Test Condition	Evaluation Standard
After being placed in a chamber at +95°C for 240 hours.	
After being placed in a chamber at -40°C for 240 hours.	
After being placed in a chamber at +40°C and 90±5% relative humidity for 240 hours.	The buzzer will be measured after
The part shall be subjected to 5 cycles. One cycle will consist of:	being placed at +25°C for 4 hours. The value of the oscillation frequency/current consumption should be ±10% compared to the initial measurements. The SPL should be within ±10dB compared to the initial measurements.
	After being placed in a chamber at +95°C for 240 hours. After being placed in a chamber at -40°C for 240 hours. After being placed in a chamber at +40°C and 90±5% relative humidity for 240 hours. The part shall be subjected to 5 cycles. One cycle will consist of: +95°C +25°C

Description: piezo audio transducer

Date: 9/22/2006 Unit: mm Page No: 4 of 5

	be measured aft +25°C for 4 le of the ency/current ould be ±10% initial The SPL should compared to
continuous operation at +70°C with rated voltage applied.hours. The value oscillation freque consumption sho compared to the measurements. be within ±10dB the initial measuTest Conditionsa) Tempurature: +5 ~ +35°Cb) Humidity: 45 - 85%c) Pressure: 8	e of the ency/current ould be ±10% initial The SPL should compared to irrements. 860-1060 mbar
voltage applied. oscillation freque 2. Intermittent life test: compared to the A duty cycle of 1 minute on, 1 minute off, a measurements. minimum of 5,000 times at room temp be within ±10dB (+25 ±2°C) with rated voltage applied. the initial measu Test Conditions a) Tempurature: +5 ~ +35°C b) Humidity: 45 - 85% c) Pressure: 8	ency/current ould be ±10% initial The SPL should compared to irements. 860-1060 mbar
2. Intermittent life test: consumption sho A duty cycle of 1 minute on, 1 minute off, a measurements. minimum of 5,000 times at room temp be within ±10dB (+25 ±2°C) with rated voltage applied. the initial measu Test Conditions Standard Test Condition a) Tempurature: +5 ~ +35°C b) Humidity: 45 - 85% c) Pressure: 8	ould be ±10% initial The SPL should compared to irements. 860-1060 mbar
2. Intermittent life test: compared to the measurements. A duty cycle of 1 minute on, 1 minute off, a minimum of 5,000 times at room temp (+25 ±2°C) with rated voltage applied. be within ±10dB the initial measurements. Test Conditions a) Tempurature: +5 ~ +35°C b) Humidity: 45 - 85% c) Pressure: 8	initial The SPL should compared to rements. 860-1060 mbar
A duty cycle of 1 minute on, 1 minute off, a measurements. minimum of 5,000 times at room temp (+25 ±2°C) with rated voltage applied. measurements. be within ±10dB the initial measurements. be within ±10dB Test Conditions a) Tempurature: +5 ~ +35°C b) Humidity: 45 - 85% c) Pressure: 8	The SPL should compared to irements. 860-1060 mbar
minimum of 5,000 times at room temp (+25 ±2°C) with rated voltage applied.be within ±10dB the initial measuTest ConditionsStandard Test Conditiona) Tempurature: +5 ~ +35°Cb) Humidity: 45 - 85%c) Pressure: 8	compared to rements. 860-1060 mbar
(+25 ±2°C) with rated voltage applied.the initial measuTest ConditionsStandard Test Conditiona) Tempurature: +5 ~ +35°Cb) Humidity: 45 - 85%c) Pressure: 8	rements. 860-1060 mbar
Test ConditionsStandard Test Conditiona) Tempurature: +5 ~ +35°Cb) Humidity: 45 - 85%c) Pressure: 8	860-1060 mbar
Standard Test Condition a) Tempurature: +5 ~ +35°C b) Humidity: 45 - 85% c) Pressure: 8	
Judgement Test Condition a) Tempurature: +25 ±2°C b) Humidity: 60 - 70% c) Pressure: 8	360-1060 mbar
\blacksquare	

