

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CER0512A

880 MHz BPF

Rev 2 - Origin Date: January 27, 2007 - Revision Date: March 28, 2007

Features

- Low Loss
- High Rejection
- Excellent Return Loss

Description

Surface mount, silver (Ag) coated neodymium ceramic filter. Developed for use in 880 MHz infrastructure applications.

Weight: 7.04 grams typical

Material: Filter is composed of a ceramic

block plated with Ag.

Filter complies with RoHS standards.

Electrical Specifications

Parameter Parame	Frequency MHz	Typical @ 25ºC	Specification @ 25°C	Spec over -40°C to +85°C
Passband Iloss	849 - 914	0.8	-2.8	-3.0
Passband Ripple	849 - 914	0.2	1.9	2.0
Passband Return Loss @ Port 1	849 - 914	-14.0	-10.0	-10.0
Passband Return Loss @ Port 2	849 - 914	-14.0	-10.0	-10.0
Passband Phase Variation	849 - 914	+/- 40	+/- 80	+/- 80
Attenuation	0.1 - 230	-50.0	-25.0	-25.0
	230 - 700	-25.0	-15.0	-15.0
	1090 - 1350	-53.0	-50.0	-50.0
	1679 - 1740	-28.0	-25.0	-25.0
Power into any port		1 Watt max		

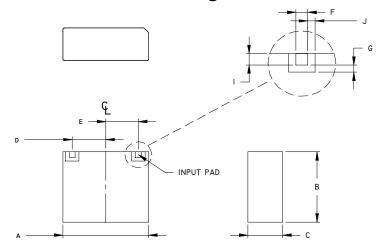
Note: Supplier shall test each filter to the critical electrical specifications of the above table. Any subsequent audits may deviate from in value due to measurement repeatability among different test systems. Such deviations shall not exceed the following limits:

Specification Allowance

Insertion Loss 0.1 dB
Return Loss 1.0 dB
Stopbands 1.0 dB

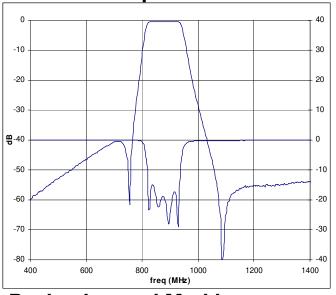
^{*}This product is covered by one or more of the following U.S. and foreign patents including: US 4,692,726;US 4,742,562; US 4,800,348;US 4,829,274;US 5,146,193;EP 0573597;DE 0573597;FR 0573597;PF 058149/92;KR 142171;US 5,127,760;US 5,218,329;US 5,250,916;US 5,327,109;US 5,488,335;CA 2114029;FR 9306297;GB 2273393;JP 3205337;KR 115113;CN 93106228.4;US 5,512,866;EP 0706719;DE 0706719;FR 0706719;GB 0706719;CB 0706719;CB

[•]CTS Corporation 2006 reserves all copyrights in the layout, design and configuration of the patterns on this product."

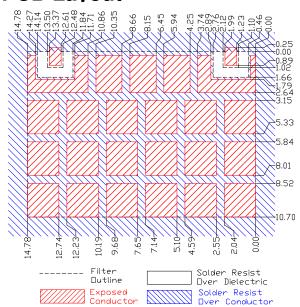


CER0512A

880 MHz BPF


Mechanical Drawing

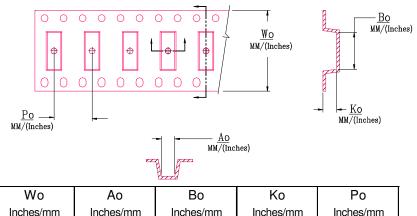
Rev 2 - Origin Date: January 27, 2007 - Revision Date: March 28, 2007



Dim Nominal (mm)		Tolerance (mm) +/- or max	Critical Parameters Noted by X	
A	14.78	Max.	X	
В	10.7	Max.	X	
C	6.0	Max.	X	
D	5.78	0.13	X	
E	5.60	0.13	X	
F	1.02	0.13	X	
G	0.64	0.13	X	
I	1.02	0.13	X	
J	0.64	0.13	X	

Electrical response

PCB Layout



Packaging and Marking

DIMENSION	UNITS	SPECIFICATION
REEL DIAMETER	mm	330
REEL WEIGHT	kg	2.3
REEL QUANTITY	ea.	250

CTS 512 YWW

Wo	Ao	Во	Ko	Po
Inches/mm	Inches/mm	Inches/mm	Inches/mm	Inches/mm
0.945"/24	0.594"/15.08	0.433"/11.0	0.248"/6.30	0.787"/20.0

Document No. 008-0256-0 Page 2 of 2 Rev. X4VH