: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

TWIN POWER AUTOMOTIVE RELAY

FEATURES

-7 Amp Steady/30 Amp Inrush current capability
 - Simple footprint enables ease of PC board layout

RoHS Directive compatibility information http://www.nais-e.com/

SPECIFICATIONS

Contact

Arrangement			1 Form C×2 (H bridge)
Contact material			Ag alloy (Cadmium free)
Initial contact resistance (Initial) (By voltage drop 6 V DC 1 A)			Typ. $6 \mathrm{~m} \Omega$ (N.O.) Typ. $9 \mathrm{~m} \Omega$ (N.C.)
Initial contact voltage drop			Max. 0.2 V (at 20 A)
Rating	Nominal capacity	witching	$\begin{aligned} & \text { N.O.: 20A } 14 \text { V DC } \\ & \text { N.C.: } 10 \mathrm{~A} 14 \mathrm{~V} \text { DC } \end{aligned}$
	Max. carrying current		30 A (2 minutes), 20 A (1 hour) (coil applied voltage: $12 \mathrm{~V} \text {, at } 20^{\circ} \mathrm{C} \text {) }$ 25 A (2 minutes), 15 A (1 hour) (coil applied voltage: $\left.12 \mathrm{~V} \text {, at } 85^{\circ} \mathrm{C}\right)$
	Min. switch	ing capacity\#1	1 A 12 V DC
Expected life (min. ope.)	Mechanica	(at 120 cpm)	10^{6}
	Electrical	resistive load	Min. 10^{5}
		$\begin{array}{\|l} \hline 7 \text { A } 14 \text { V DC, } \\ \text { Inrush } 30 \text { A } \\ \text { (Motor load) } \\ \hline \end{array}$	2×10^{5}
		20 A 14 V DC (Motor lock)	Min. 5×10^{4}
Coil			
Nominal operating power			640 mW

\#1 This value can change due to the switching frequency, environmental conditions, and desired reliability level, therefore it is recommended to check this with the actual load.

Characteristics

Max. operating speed (at rated load)			120 cpm
Initial insulation resistance*1			Min. $100 \mathrm{M} \Omega$ (at 500 V DC)
Initial breakdown voltage*2	Between open contacts		1,000 Vrms for 1 min .
	Between contacts and coil		1,000 Vrms for 1 min .
Operate time*3 (at nominal voltage)			Max. 10 ms (initial)
Release time ${ }^{* 3}$ (at nominal voltage)			Max. 10 ms (initial)
Shock resistance		Functional*4	Min. $100 \mathrm{~m} / \mathrm{s}^{2}\{10 \mathrm{G}\}$
		Destructive*5	Min. $1,000 \mathrm{~m} / \mathrm{s}^{2}\{100 \mathrm{G}\}$
Vibration resistance		Functional*6	Approx. $44.1 \mathrm{~m} / \mathrm{s} 2\{4.5 \mathrm{G}\}$, 10 Hz to 100 Hz
		Destructive*7	Approx. $44.1 \mathrm{~m} / \mathrm{s}^{2}\{4.5 \mathrm{G}\}$, 10 Hz to 500 Hz
Conditions for operation, transport and storage*8 (Not freezing and condensing at low temperature)		Ambient temp.	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{F} \text { to }+185^{\circ} \mathrm{F} \end{aligned}$
		Humidity	5\%R.H. to 85\%R.H.
Mass		Standard type	Approx. 15 g .529 oz

Remarks
${ }^{* 1}$ Measurement at same location as "Initial breakdown voltage" section
*2 Detection current: 10 mA
${ }^{*}$ Excluding contact bounce time
${ }^{*} 4$ Half-wave pulse of sine wave: 11 ms ; detection time: $10 \mu \mathrm{~s}$
${ }^{*} 5$ Half-wave pulse of sine wave: 6 ms
${ }^{*} 6$ Detection time: 10 us
${ }^{* 7}$ Time of vibration for each direction;
X, Y, direction: 2 hours
Z direction: 4 hours
${ }^{*}$ Refer to Conditions for operation, transport and storage mentioned in AMBIENT ENVIRONMENT.
Please inquire if you will be using the relay in a high temperature atmosphere ($110^{\circ} \mathrm{C} 230^{\circ} \mathrm{F}$).

TYPICAL APPLICATIONS

- Power windows
- Auto door lock
- Electrically powered sunroof
- Electrically powered mirrors
- Powered seats
- Lift gates
- Slide door closers, etc. (for DC motor forward/ reverse control circuits)

ORDERING INFORMATION

TYPES AND COIL DATA (at $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$)

Part No.	Nominal voltage, V DC	Pick-up voltage, V DC (Initial)	Drop-out voltage, V DC (Initial)	Coil resistance, Ω	Nominal operating current, mA	Nominal operating Power, mW	Usable voltage range, VDC
CF2-12V	12	Max. 7.2	Min. 1.0	$225 \pm 10 \%$	$53.3 \pm 10 \%$	640	10 to 16

[^0]

Dimension:
Max. 1mm . 039 inch:
1 to 3 mm .039 to .118 inch: $\pm 0.2 \pm .008$
Min. 3mm . 118 inch: $\pm 0.3 \pm .012$

* Dimensions (thickness and width) of terminal specified in this catalog is measured before pre-soldering. Intervals between terminals is measured at A surface level.

EXAMPLE OF CIRCUITS

Forward/reverse control circuits of DC motor for power window

SW A	SW B	Motor
OFF	OFF	Stop
ON	OFF	Forward
OFF	ON	Reverse

REFERENCE DATA

1-(1). Coil temperature rise (at room temperature)
Sample: CF2-12V, 6pcs.
Measured potion: Inside the coil
Contact carrying current: 10A, 15A, 20A
Ambient temperature: Room temperature

3. Ambient temperature and operating temperature range

1-(2). Coil temperature rise (at $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$) Sample: CF2-12V, 6pcs.
Measured potion: Inside the coil
Contact carrying current: 10A, 15A, 20A

Ambient temperature: $85^{\circ} \mathrm{C} 185^{\circ} \mathrm{F}$

4. Distribution of pick-up and drop-out voltage Sample: CF2-12V, 100pcs.

2. Max. switching capability (Resistive load, initial)

Recommended PC board pattern (6-4 dia.)
$(6-.157$ dia.) Land diameter (R1.5) 1.27 ± 0.1

Schematic

\qquad

General tolerance
$\pm 0.1 \pm .004$

6-(1). Electrical life test (Motor free) Sample: CF2-12V, 3pcs.
Load: Inrush current: 30A, Steady current: 7A,
Power window motor actual load (free condition) Switching frequency: (ON:OFF = 1s:5s)
Ambient temperature: Room temperature Circuit

Load current waveform
Inrush current: 27A, Steady current: 8.4A Brake current: 15A

10 A.

6-(2). Electrical life test (Motor lock)
Sample: CF2-12V, 3pcs.
Load: 20A 14V DC,
Power window motor actual load (lock condition)
Switching frequency: (ON:OFF = 1s:5s)
Ambient temperature: Room temperature Circuit

Load current waveform

Change of pick-up and drop-out voltage

Change of contact resistance

Change of pick-up and drop-out voltage

Change of contact resistance

[^0]: * Other pick-up voltage types are also available. Please contact us for details.

