

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

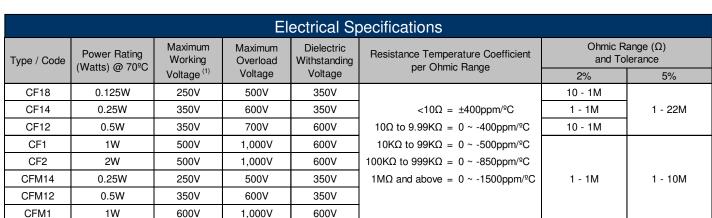
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

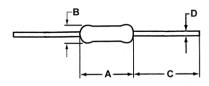
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



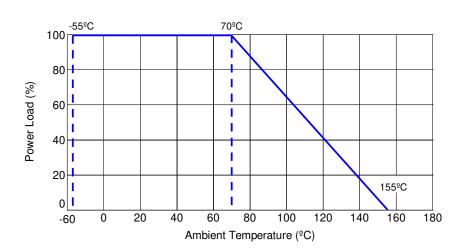
Resistive Product Solutions


Features:

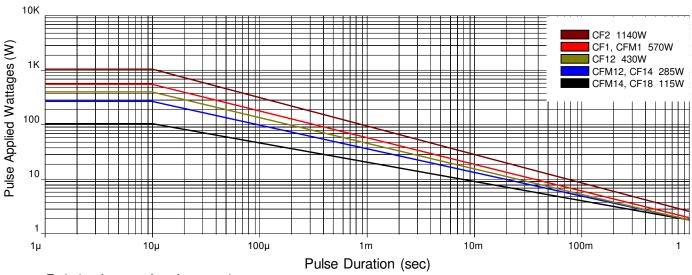
- General purpose resistor ideal for commercial/industrial applications
- Flame retardant coatings standard
- Flameproof version available as CFF
- Panasert available on selected sizes; contact factory
- Auto sequencing/insertion compatible
- CFM (mini) ideal choice when size constraints apply
- Cut and formed product is available on select sizes; contact factory
- Standard lead wire for CF/CFM is copper plated steel, with 100% tin over plate
- 100% tin plate on copper wire is available as type CFQ/CFQM
- RoHS compliant / lead-free

⁽¹⁾ Lesser of √P*R or maximum working voltage.

Mechanical Specifications


Type / Code	A Body Length	B Body Diameter	C Lead Length(Bulk)	D - Lead Diameter CF/CFM	D - Lead Diameter CFQ/CFQM	Unit
CF/CFQ18	0.130 ± 0.012	0.067 ± 0.012	1.102 ± 0.118	0.016 ± 0.003	0.018 ± 0.003	inches
	3.30 ± 0.30	1.70 ± 0.30	28.00 ± 3.00	0.40 ± 0.08	0.45 ± 0.08	mm
CF/CFQ14	0.236 ± 0.012	0.091 ± 0.012	1.102 ± 0.118	0.022 ± 0.003	0.022 ± 0.003	inches
	6.00 ± 0.30	2.30 ± 0.30	28.00 ± 3.00	0.55 ± 0.08	0.55 ± 0.08	mm
CF/CFQ12	0.335 ± 0.039	0.106 ± 0.020	1.102 ± 0.118	0.022 ± 0.003	0.028 ± 0.004	inches
	8.50 ± 1.00	2.70 ± 0.50	28.00 ± 3.00	0.55 ± 0.08	0.70 ± 0.10	mm
CF/CFQ1	0.433 ± 0.039	0.177 ± 0.020	1.181 ± 0.118	0.031 ± 0.004	0.031 ± 0.004	inches
	11.00 ± 1.00	4.50 ± 0.50	30.00 ± 3.00	0.80 ± 0.10	0.80 ± 0.10	mm
CF/CFQ2	0.591 ± 0.039	0.197 ± 0.020	1.339 ± 0.157	0.031 ± 0.004	0.031 ± 0.004	inches
	15.00 ± 1.00	5.00 ± 0.50	34.00 ± 4.00	0.80 ± 0.10	0.80 ± 0.10	mm
CFM/CFMQ14	0.130 ± 0.012	0.067 ± 0.012	1.102 ± 0.118	0.016 ± 0.003	0.018 ± 0.003	inches
	3.30 ± 0.30	1.70 ± 0.30	28.00 ± 3.00	0.40 ± 0.08	0.45 ± 0.08	mm
CFM/CFMQ12	0.236 ± 0.012	0.091 ± 0.012	1.102 ± 0.118	0.022 ± 0.003	0.022 ± 0.003	inches
	6.00 ± 0.30	2.30 ± 0.30	28.00 ± 3.00	0.55 ± 0.08	0.55 ± 0.08	mm
CFM/CFMQ1	0.354 ± 0.020	0.138 ± 0.020	1.102 ± 0.118	0.028 ± 0.002	0.028 ± 0.002	inches
	9.00 ± 0.50	3.50 ± 0.50	28.00 ± 3.00	0.70 ± 0.05	0.70 ± 0.05	mm

Stackpole Electronics, Inc. Resistive Product Solutions


Performance Characteristics							
Test	Test Method		Typical Results			Test Limits	
Current Noise	MIL-STD 202, Method 308	1Ω ~ 91ΚΩ	100ΚΩ ~ 910ΚΩ	1ΜΩ ~ 22ΜΩ	1Ω ~ 91ΚΩ	100ΚΩ ~ 910ΚΩ	1ΜΩ ~ 22ΜΩ
Current Noise	MIL-STD 202, Metriod 306	0.15μV/V	0.32μV/V	0.54μV/V	0.2μV/V	0.4μV/V	0.6μV/V
Short Time Overload	JIS C5201-1, IEC60115-1, 4.13		<± 0.25%		≤± (0.75% + 0.05Ω)		Ω)
Resistance to Solder Heat	JIS C5201-1, IEC60115-1, 4.18	<± 0.3%		≤± (0.50% + 0.05Ω)			
Rapid Change of Temperature	JIS C5201-1, IEC60115-1, 4.19	<± 0.3% ≤± (1.00% + 0.05Ω)		Ω)			
Endurance at 70°C	JIS C5201-1, IEC60115-1, 4.25.1	R<100KΩ: ≤± (2.0% + 0.05 R≥100KΩ: ≤± (3.0% + 0.05		,			
Terminal Strength	MIL-STD 202, Method 211	<± 0.20%		<± 0.20% ≤± (0.50% + 0.05Ω)		Ω)	
Damp Heat (Steady state)	JIS C5201-1, IEC60115-1, 4.24	<± 1.5% R<100KΩ: ≤± (3.0% + R≥100KΩ: ≤± (5.0% +		,			

Operating Temperature Range: -55°C to +155°C

Power Derating Curve:

Single Pulse Power:

Vp(Ip) or Pp

Repetitive Pulse Data:

If repetitive pulses are applied to resistors, pulse wave form must be less than "Pulse limiting voltage", "Pulse limiting current" or "Pulse limiting wattage" calculated by the formula below.

 $Vp = K\sqrt{P \times R \times T/t}$

 $Ip = K\sqrt{P/R \times T/t}$

 $Pp = K^2 \times P \times T/t$

Where: Vp: Pulse limiting voltage (V)

Ip: Pulse limiting current (A)Pp: Pulse limiting wattage (W)

P: Power rating (W)

R: Nominal resistance (ohm)
T: Repetitive period (sec)
t: Pulse duration (sec)

K: Coefficient by resistors type (refer to below matrix)

[Vr: Rated Voltage (V), Ir: Rated Current (A)]

Note 1: If T>10 \rightarrow T = 10 (sec), T/t>1000 \rightarrow T/t = 1000

Note 2: If T>10 and T/t>1000, "Pulse Limiting power (Single pulse) is applied

Note 3: If Vp<Vr (lp<Ir or Pp<P), Vr (lr, P) is Vp (lp, Pp)

Note 4: Pulse limiting voltage (Current, Wattage) is applied at less than rated ambient temperature. If

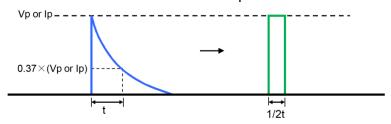
ambient temperature is more than the rated temperature (70°C), please decrease power rating

according to "Power Derating Curve"

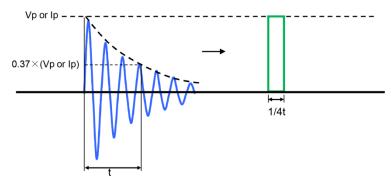
Note 5: Please assure sufficient margin for use period and conditions for "Pulse limiting voltage"

Note 6: If the pulse waveform is not square wave, please judge after transform the waveform into square

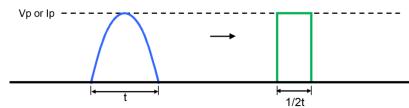
wave according to the "Waveform Transformation to Square Wave".

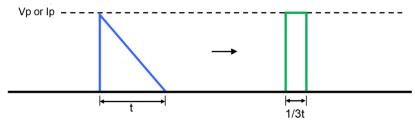

Coefficient (K) Matrix				
Resistor Type	К			
RNF, RNMF	0.7			
CF, CFM, HDM	0.8			
ASR, SPR, ASRM, SPRM	1.0			
RSPF, RSPL	0.9			
RSF, RSMF	0.8			
FRN	0.6			

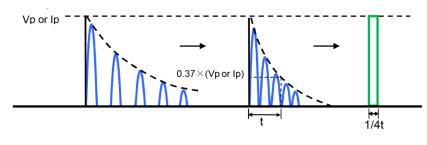
Rev Date: 01/06/2017

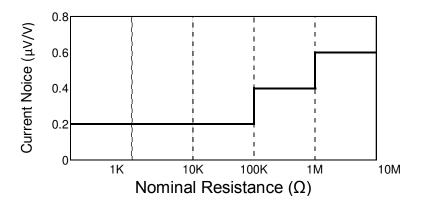

Resistive Product Solution

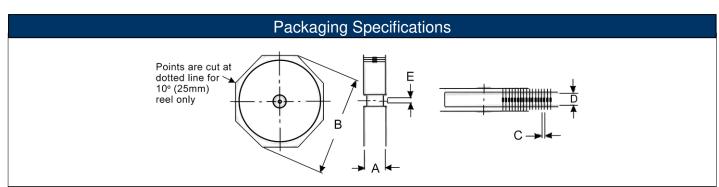
Waveform Transformation to Square Wave


1. Discharge curve wave with time constant "t" → Square wave


2. Damping oscillation wave with time constant of envelope "t" → Square wave

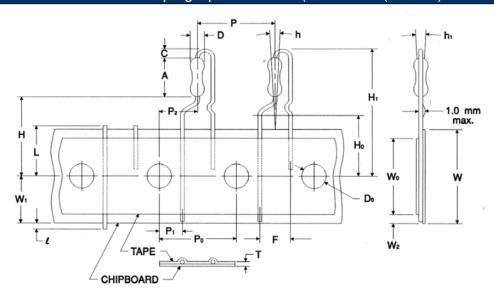

3. Half-wave rectification wave → Square wave


4. Triangular wave → Square wave



5. Special wave \rightarrow Square wave

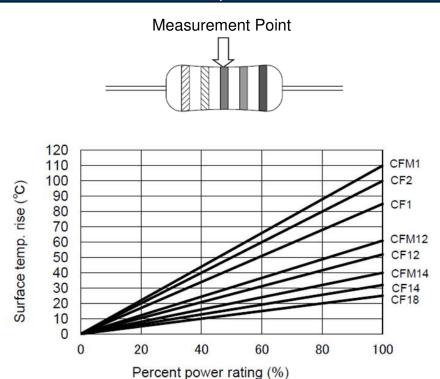
Current Noise:



Type / Code	Class	Tape	A Max (1).	B Max	С	D (2)	Unit
OE40 OEM44	1	0.250	2.508	13.504	0.197 ± 0.020	2.063 ± 0.079	Inches
CF18, CFM14	-	6.35	63.70	343.00	5.00 ± 0.50	52.40 ± 2.00	mm
CF14. CFM12	i	0.250	2.638	13.504	0.197 ± 0.020	2.063 ± 0.079	Inches
GF 14, GFIVI12	ı	6.35	67.00	343.00	5.00 ± 0.50	52.40 ± 2.00	mm
CF12. CFM1	_	0.250	2.736	13.504	0.197 ± 0.020	2.063 ± 0.079	Inches
CF12, CFIVIT	1	6.35	69.50	343.00	5.00 ± 0.50	52.40 ± 2.00	mm
CF1	i	0.250	2.972	13.504	0.197 ± 0.020	2.063 ± 0.079	Inches
CF1	1	6.35	75.50	343.00	5.00 ± 0.50	52.40 ± 2.00	mm
CF2	i	0.250	3.130	13.504	0.394 ± 0.020	2.063 ± 0.079	Inches
		6.35	79.50	343.00	10.00 ± 0.50	52.40 ± 2.00	mm

Dimension "E": This is a non-critical dimension that does not have a tolerance in the standard. Range of diameters is from 0.547 inches (13.90 mm) to 1.500 inches (38.10 mm).

- (1) Reference value only. The "A" dimension shall be governed by the overall length of the taped component. The distance between flanges shall be 0.059 inches (1.50 mm) to 0.315 (8.00 mm) greater than the overall component.
- The given dimension "D" expresses the standard width spacing. A 26mm narrow spacing is available as option "N" packaging code. Contact factory for more details.


Radial Lead Taping Specifications (Pana-Sert (PCF14)

Symbol	Description	PANA-SERT	Unit
А	Resistor body length	0.256 ± 0.020 6.50 ± 0.50	inches mm
С	Height of bending	0.098 ± 0.020 2.50 ± 0.50	inches mm
D	Resistor body diameter	0.091 ± 0.008 2.30 ± 0.20	inches mm
D ₀	Sprocket-hole diameter	0.157 ± 0.012 4.00 ± 0.30	inches mm
F	Resistor lead spacing	0.197 ± 0.039 5.00 ± 1.00	inches mm
Н	Height to bottom of resistor	0.748 ± 0.039 19.00 ± 1.00	inches mm
H ₀	Height to lead clinch	0.630 ± 0.020 16.00 ± 0.50	inches mm
H ₁	Height of resistor	1.122 max. 28.50 max.	inches mm
h	Resistor alignment	$0 \pm 0.079 (0\pm 5^{\circ}) \\ 0 \pm 2.00 (0\pm 5^{\circ})$	inches mm
h ₁	Resistor alignment	$0 \pm 0.079 (0\pm 5^{\circ}) \\ 0 \pm 2.00 (0\pm 5^{\circ})$	inches mm
I	Lead protrusion	0.079 max. 2.00 max.	inches mm

Symbol	Description	PANA-SERT	Unit
L	Cutout Length(1)	0.433 max. 11.00 max.	inches mm
Р	Resitor pitch(1)	0.500 ± 0.039 12.70 ± 1.00	inches mm
P ₀	Sprocket-hole pitch(1)	0.500 ± 0.012 12.70 ± 0.30	inches mm
P ₁	Sprocket-hole center to lead center	0.152 ± 0.028 3.85 ± 0.70	inches mm
P ₂	Sprocket-hole center to resistor center(1)	0.250 ± 0.051 6.35 ± 1.30	inches mm
Т	Thickness (chipboard and tape)	0.028 ± 0.008 0.70 ± 0.20	inches mm
W	Chipboard width(1)	0.709 + 0.039 / -0.020 18.00 + 1.00 / -0.50	inches mm
W ₀	Hold-down tape width	0.49 _{min.} 12.50 ^{min.}	inches mm
W ₁	Sprocket-hole position	0.354 + 0.030 / -0.020 9.00 + 0.75 / -0.50	inches mm
W ₂	Hold-down tape position	0.118 max. 3.00 max.	inches mm

Surface Temperature Rise

Standard Color Codes

PRECISION - Have three significant-figure bands, a multiplier band and a tolerance band. Tolerances 1% or less.

GENERAL PURPOSE - Have two significant-figure bands, a multiplier band and a tolerance band. Tolerances 2% or greater.

COLOR BAND DESCRIPTION					
BAND	PRECISION	GENERAL PURPOSE			
1ST BAND	NOMINAL	NOMINAL			
2ND BAND	NOMINAL	NOMINAL			
3RD BAND	NOMINAL	MULTIPLIER			
4TH BAND	MULTIPLIER	TOLERANCE			
5TH BAND	TOLERANCE	-			

Multiplier

Nominal

Black	0	1	-
Brown	1	10	1
Red	2	100	2
Orange	3	1K	-
Yellow	4	10K	-
Green	5	100K	0.5
Blue	6	1000K	0.25
Violet	7	-	0.1
Gray	8	-	-
White	9	0.001	-
Silver	-	0.01	10
Gold	-	0.1	5

Tolerance (%)

Resistive Product Solutions

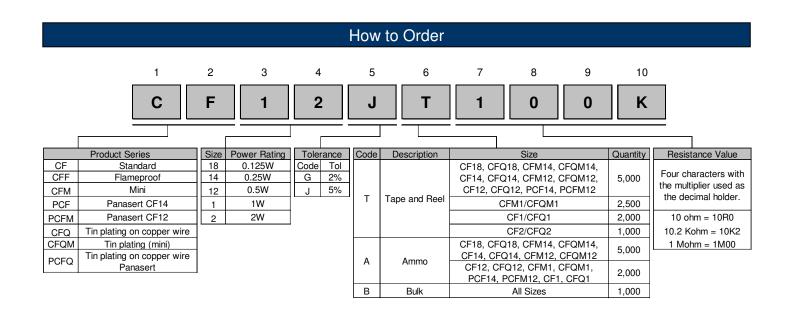
RoHS Compliance

Stackpole Electronics has joined the worldwide effort to reduce the amount of lead in electronic components and to meet the various regulatory requirements now prevalent, such as the European Union's directive regarding "Restrictions on Hazardous Substances" (RoHS 2). As part of this ongoing program, we periodically update this document with the status regarding the availability of our compliant components. All our standard part numbers are compliant to EU Directive 2011/65/EU of the European Parliament.

	RoHS Compliance Status							
Standard Product Series	Description	Package / Termination Type	Standard Series RoHS Compliant	Lead-Free Termination Composition	Lead-Free Mfg. Effective Date (Std Product Series)	Lead-Free Effective Date Code (YY/WW)		
CF	Carbon Film Leaded Resistor	Axial	YES	100% Matte Sn	Jan-04 (Taiwan, China)	04/01		
CFM	Mini-Carbon Film Leaded Resistor	Axial	YES	100% Matte Sn	Jan-04 (Taiwan, China)	04/01		

"Conflict Metals" Commitment

We at Stackpole electronics, Inc. are joined with our industry in opposing the use of metals mined in the "conflict region" of the Easter Democratic Republic of the Congo (DRC) in our products. Recognizing that the supply chain for metals used in the electronics industry is very complex, we work closely with our own suppliers to verify to the extent possible that the materials and products we supply do not contain metals sourced from this conflict region. As such, we are in compliance with the requirements of Dodd-Frank Act regarding Conflict Minerals.


Compliance to "REACH"

We certify that all passive components supplied by Stackpole Electronics, Inc. are SVHC (Substances of Very High Concern) free and compliant with the requirements of EU Directive 1907/2006/EC, "The Registration, Evaluation, Authorization and Restriction of Chemicals", otherwise referred to as REACH. Contact us for complete list of REACH Substance Candidate List.

Environmental Policy

It is the policy of Stackpole Electronics, Inc. (SEI) to protect the environment in all localities in which we operate. We continually strive to improve our effect on the environment. We observe all applicable laws and regulations regarding the protection of our environment and all requests related to the environment to which we have agreed. We are committed to the prevention of all forms of pollution.

Stackpole Electronics, Inc. Resistive Product Solutions

