imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

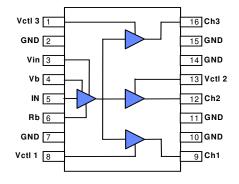
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CGA-0116(Z) 3-OUTPUT ACTIVE SPLITTER FOR CATV

rfmd.com

RFMD Green, RoHS Compliant, Pb-Free (Z Part Number) Package: TSSOP, 16-pin


Product Description

Consumer products, such as Set-Top boxes, PVR's, Home Gateways, and Cable Modems, often require a technique for "splitting" the incoming RF CATV signal, to perform various functions, such as picture-inpicture, VOIP, data, and video recording. RFMD's CGA-0116 is a high performance 3-output broadband CATV active splitter-amplifier, designed for operation at 5V. It offers flat gain, high isolation, high IP₂, and low power consumption. This RFIC uses the latest Silicon Germanium Heterostructure Bipolar Transistor (SiGe HBT) process featuring 2 micron emitters. The matte tin finish on the lead-free package utilizes a post annealing process to miti-

Optimum Technology Matching® Applied GaAs HBT GaAs MESFET InGaP HBT SiGe BiCMOS Si BiCMOS Si Ge HBT GaAs pHEMT Si CMOS Si BJT GaN HEMT

RF MEMS

gate tin whisker formation and is RoHS compliant per EU directive 2002/95. This package is also manufactured with green molding compounds that contain no antimony trioxide nor halogenated fire retardants.

Features

- Available in Lead Free, RoHS compliant, and Green packaging
- Broad Frequency Band:50MHz to 870MHz
- Flat Gain Response: < ±0.5dB Variance
- Internally Matched to 75Ω
- High Isolation between Output Ports:>35dB
- High IP₂:>149dBμV
- Single Voltage Supply
- Patent Pending

Applications

- Set-Top Box
- Cable Modem
- PVR

Devenuetor	Specification			Unit	Oandition
Parameter	Min.	Тур.	Max.	Unit	Condition
Frequency of Operation	50.0		870.0	MHz	
Current	135.0	150.0	165.0		
Output Power at 1dB Compression	114.5	116.0		dBµV	Channels 1 and 2 @ 500MHz
Output Power at 1dB Compression	118.5	120.0		dBµV	Channel 3 @ 870MHz
Small Signal Gain	1.8	2.3	2.8	dB	Channels 1 and 2 @ 870MHz
Small Signal Gain	6.5	7.5	8.5	dB	Channel 3 @ 870MHz
Input Return Loss	7.5	9.0		dB	50MHzto870MHz
Output Return Loss	11.0	13.0		dB	50MHzto870MHz
Output Third Order Intercept Point	127.0	129.0		dBµV	Channels 1 and 2 @ 500MHz
Output Third Order Intercept Point	132.0	134.0		dBµV	Channel 3 @ 500 MHz
Output Second Order Intercept Point	146.0	149.0		dBµV	Channels 1 and 2 @ 500MHz
Output Second Order Intercept Point	152.0	155.0		dBµV	Channel 3 @ 500 MHz
Noise Figure		7.5	8.5	dB	Channels 1 and 2 @ 870MHz
Noise Figure		7.5	8.5	dB	Channel 3 @ 870 MHz
Isolation	32.0	35.0		dB	Channel-to-Channel 50MHz to 870MHz
Isolation	37.0	40.0		dB	Output-to-Input 50MHzto870MHz
Thermal Resistance		70		°C/W	junction to backside

Test Conditions: $Z_0 = 75\Omega$, $V_{CC} = 5V$, I = 150 mA, $T_{BP} = 30^{\circ}C$

CGA-0116(Z)

Preliminary

rfmd.com

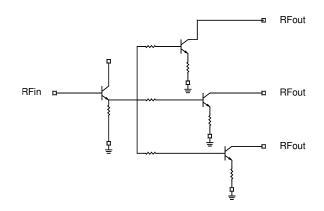
Absolute Maximum Ratings

e e					
Parameter	Rating	Unit			
Max Device Current (I _D)	200	mA			
Max Device Voltage (V _D)	6	V			
Max RF Input Power	15	dBm			
Max Dissipated Power	1.2	W			
Max Junction Temperature (T_J)	150	°C			
Operating Temperature Range (T_L)	-40 to +85	°C			
Max Storage Temperature	-40to+150	°C			

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression:

 $I_D V_D < (T_J - T_L) / R_{TH}$, j-l

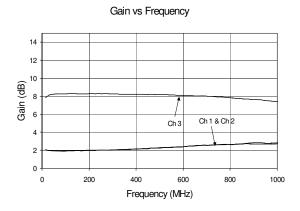
Simplified Device Schematic

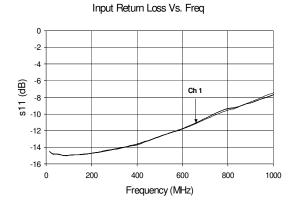


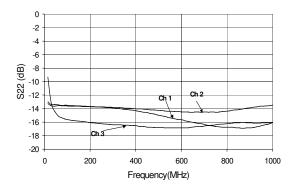
Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.

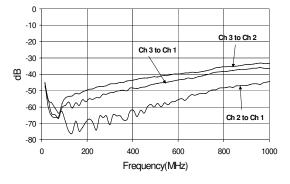
RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

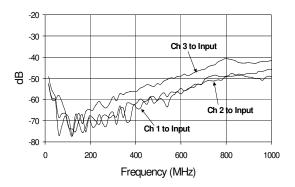

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

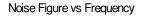


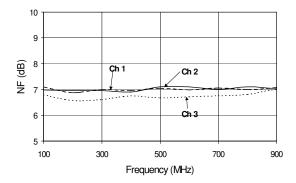

CGA-0116(Z)

Evaluation Board Data (V_{CC} = 5.0V, I_{CC} = 150mA)

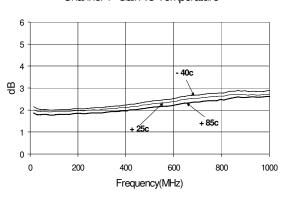


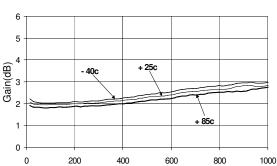

Output Return Loss vs Frequency



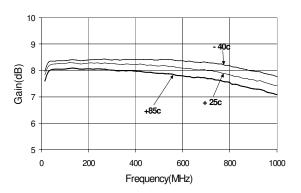

Isolation vs Frequency

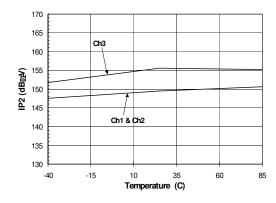
Isolation Channel Output to RF Input



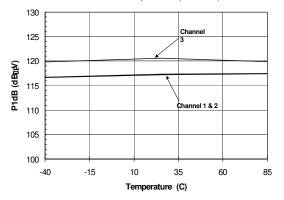


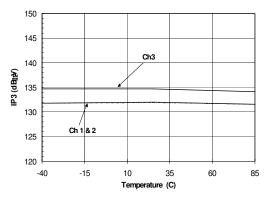
Evaluation Board Data (V_{CC} = 5.0V, I_{CC} = 150mA)


Channel 1 Gain vs Temperature


Channel 2 Gain vs Temperature

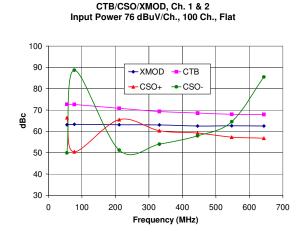
Frequency (MHz)

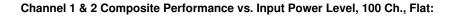

Ch 3 Gain vs Temperature


IP2 vs. Temperature (500 MHz)

P1dB vs. Temperature (500 MHz)

IP3 vs. Temperature (500 MHz)

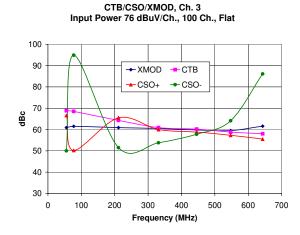


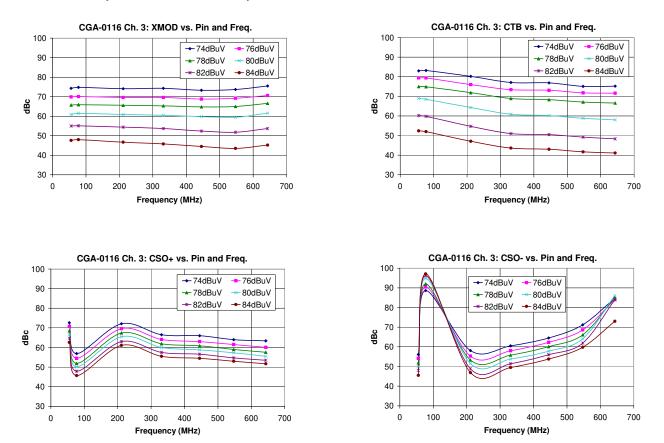



CGA-0116(Z)

Channel 1 and 2 Composite Performance: Evaluation Board Data (V_{CC} = 5.0V, I_{CC} = 150mA)

Ch. 1 Measured Data Shown

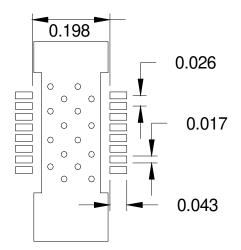




Channel 3 Composite Performance:

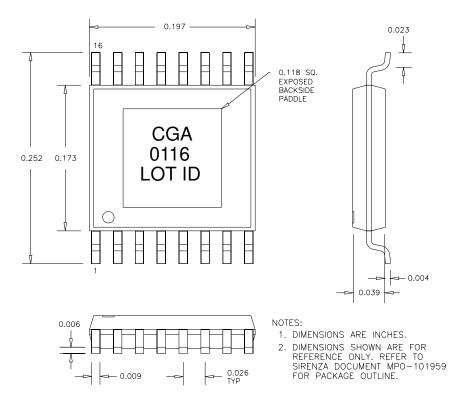
Evaluation Board Data (V_{CC} = 5.0V, I_{CC} = 150mA)

Channel 3 Composite Performance vs. Input Power Level, 100 Ch., Flat:

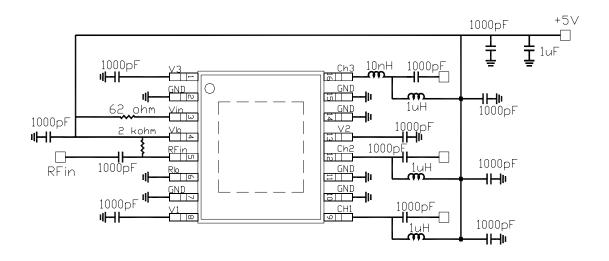

rfmd.com

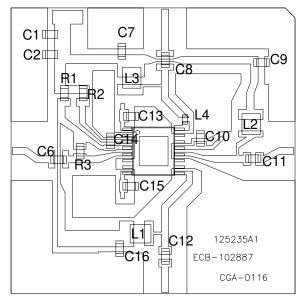
Pin	Function	Description	
1	VCTL 3	Gain adjust for Output 3. This pin should be bypassed to ground for max gain	
2, 7,	GND	Connection to ground.	
10,			
11,			
14,15			
3	VIN	Voltage supply connection for input. This pin should be bypassed with a suitable capacitor.	
4	VB	Bias connection for input. This pin should be bypassed with a suitable capacitor	
5	IN	RF input pin. This pin requires a DC blocking capacitor	
6	RB	Input bias resistor connection for setting bias current. This pin should be connected to groung for specified operation.	
8	VCTL 1	Gain adjust for Output 3. This pin should be bypassed to ground for max gain	
9	Ch. 1	RF Output 1 and DC supply pin. This pin required the use of an external blocking capacitor and RF choke.	
12	Ch. 2	RF Output 2 and DC supply pin. This pin required the use of an external blocking capacitor and RF choke.	
13	VCTL 2	Gain adjust for Output 3. This pin should be bypassed to ground for max gain	
16	Ch. 3	RF Output 3 and DC supply pin. This pin required the use of an external blocking capacitor and RF choke.	
Back- side	GND	The exposed backside paddle needs to be well grounded with multiple vias. This is the main electrical GND and the main thermal path.	

Recommended Land Pattern


Note 1: Dimensions are in inches

Package Drawing


Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.



CGA-0116(Z)

Evaluation Board Schematic

Evaluation Board Layout and Bill of Materials

Component	Value
C1	0.1uF
C2,C6,C7,C8,C9, C12,C13,C14,C15	
L1,L2,L3	1uH
R1	0 ohm
R2	62 ohm
R3	2K ohm
L4	10nH 0402 size

NOTE: VIAS NOT SHOWN

