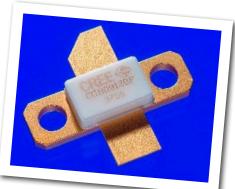
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CGH09120F 120 W, UHF - 2.5 GHz, GaN HEMT for WCDMA, LTE, MC-GSM

Cree's CGH09120F is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH09120F ideal for MC-GSM, WCDMA and LTE amplifier applications. The transistor is supplied in a ceramic/metal flange package.

Package Type: 440095 PN: CGH09120F

Typical Performance Over 800-950 MHz (T_c = 25°C) of Demonstration Amplifier

Parameter	800 MHz	850 MHz	900 MHz	950 MHz	Units
Gain @ 43 dBm	19.2	21.0	21.6	21.6	dB
ACLR @ 43 dBm	-40.5	-40.5	-39.0	-36.5	dBc
Drain Efficiency @ 43 dBm	31.0	33.7	36.6	39.3	%

Note:

Measured in the CGH09120F-AMP amplifier circuit, under WCDMA 3GPP test model 1, 64 DPCH, 67% clipping, PAR = 8.81 dB @ 0.01 % Probability on CCDF.

Features

- UHF 2.5 GHz Operation
- 21 dB Gain
- -38 dBc ACLR at 20 W P_{AVE}
- 35 % Efficiency at 20 W P_{AVE}
- High Degree of DPD Correction Can be Applied

CREE 🔶

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	84	Volts	25°C
Gate-to-Source Voltage	V _{gs}	-10, +2	Volts	25°C
Power Dissipation	P _{DISS}	56	Watts	
Storage Temperature	T _{stg}	-65, +150	°C	
Operating Junction Temperature	TJ	225	°C	
Maximum Forward Gate Current	I _{GMAX}	30	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	12	А	25°C
Soldering Temperature ²	Τ _s	245	°C	
Screw Torque	τ	80	in-oz	
Thermal Resistance, Junction to Case ³	R _{eJC}	1.7	°C/W	85°C
Case Operating Temperature ³	T _c	-40, +150	°C	

Note:

¹ Current limit for long term, reliable operation.

² Refer to the Application Note on soldering at <u>www.cree.com/RF/Document-Library</u>

 $^{\rm 3}$ Measured for the CGH09120F at P_{_{DISS}} = 56 W

Electrical Characteristics ($T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics ¹							
Gate Threshold Voltage	$V_{_{GS(th)}}$	-3.8	-3.0	-2.3	V _{DC}	$V_{_{\rm DS}}$ = 10 V, I _D = 28.8 mA	
Gate Quiescent Voltage	V _{GS(Q)}	-	-2.7	-	V _{DC}	$V_{_{\rm DS}}$ = 28 V, I $_{_{\rm D}}$ = 1.2 A	
Saturated Drain Current ²	I _{DS}	23.2	28.0	-	А	$V_{_{\rm DS}}$ = 6.0 V, $V_{_{\rm GS}}$ = 2.0 V	
Drain-Source Breakdown Voltage	V _{BR}	120	-	-	V _{DC}	$V_{_{\rm GS}}$ = -8 V, I $_{_{\rm D}}$ = 28.8 mA	
RF Characteristics ⁵ ($T_c = 25^{\circ}C$, $F_0 = 870$ Mł	Iz unless otherw	vise noted)					
Saturated Output Power ^{3,4}	P _{SAT}	-	120	-	W	$V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 1.2 A,	
Pulsed Drain Efficiency ³	η	-	75	-	%	V_{DD} = 28 V, I_{DQ} = 1.2 A, P_{OUT} = P_{SAT}	
Modulated Gain ⁶	G _{ss}	20	21.5	-	dB	$V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 1.2 A, $P_{_{OUT}}$ = 43 dBm	
WCDMA Linearity ⁶	ACLR	-	-38	-34	dBc	$V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 1.2 A, $P_{_{OUT}}$ = 43 dBm	
Modulated Drain Efficiency ⁶	η	31	35	-	%	$V_{_{DD}}$ = 28 V, $I_{_{DQ}}$ = 1.2 A, $P_{_{OUT}}$ = 43 dBm	
Output Mismatch Stress	VSWR	-	-	10:1	Y	No damage at all phase angles, V_{DD} = 28 V, I_{DQ} = 1.2 A, P_{OUT} = 20 W CW	
Dynamic Characteristics							
Input Capacitance	C _{GS}	-	35.3	-	pF	$V_{_{DS}}$ = 28 V, $V_{_{gs}}$ = -8 V, f = 1 MHz	
Output Capacitance	C _{DS}	-	9.1	-	pF	$V_{_{DS}}$ = 28 V, $V_{_{gs}}$ = -8 V, f = 1 MHz	
Feedback Capacitance	C _{GD}	-	1.6	-	pF	$V_{_{DS}}$ = 28 V, $V_{_{gs}}$ = -8 V, f = 1 MHz	

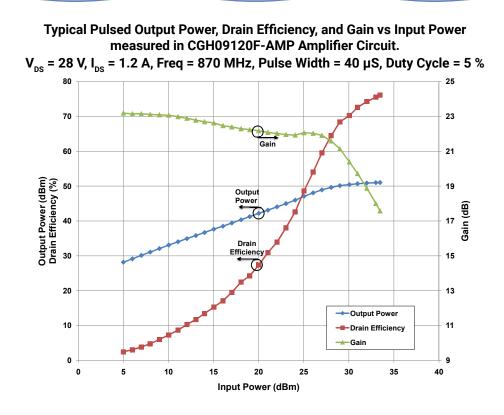
Notes:

2

¹ Measured on wafer prior to packaging.

² Scaled from PCM data.

³ Pulse Width = 40 μ S, Duty Cycle = 5 %. ⁴ P_{SAT} is defined as I_g = 10 mA peak.

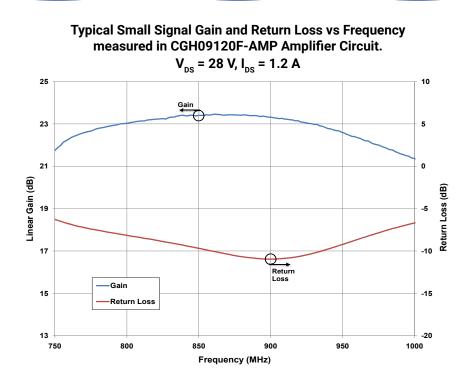

⁵ Measured in CGH09120F-AMP

⁶ Single Carrier WCDMA, 3GPP Test Model 1, 64 DPCH, 67 % Clipping, PAR = 8.81 dB @ 0.01 % Probability on CCDF.

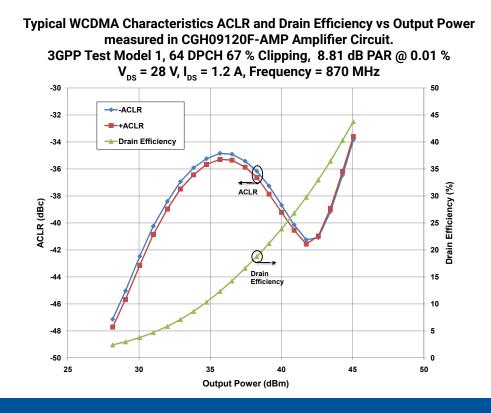
Copyright © 2009-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Typical Pulse Performance

Typical Pulsed Saturated Power vs Frequency measured in CGH09120F-AMP Amplifier Circuit. $V_{_{DS}}$ = 28 V, $I_{_{DS}}$ = 1.2 A, $P_{_{SAT}}$ = 10 mA $I_{_{GS}}$ Peak, Pulse Width = 40 µS, Duty Cycle = 5 % 54.0 100 53.6 90 53.2 80 \odot Saturated Output Power (dBm) 52.8 70 Drain Efficiency Efficiency (%) 60 52.4 50 52.0 -Psat Drain Efficiency Drain 40 51.6 Psat 51.2 30 50.8 20 50.4 10 50.0 0 700 750 800 900 950 1000 850 Frequency (MHz)

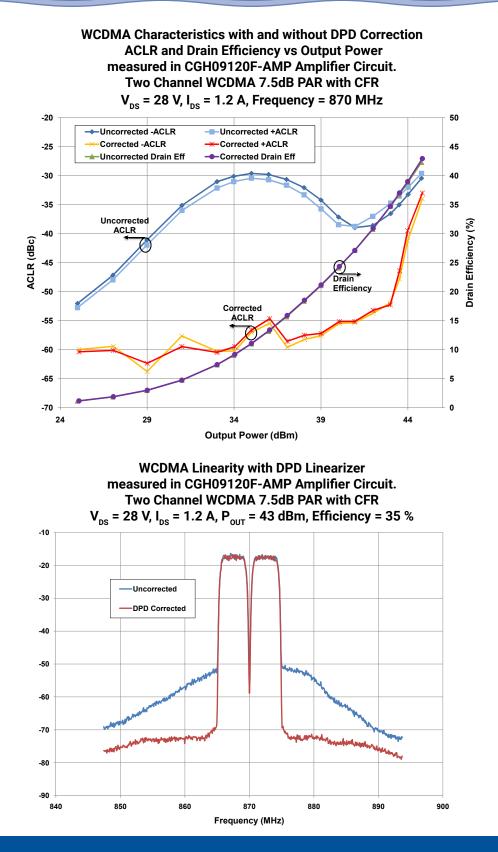

Copyright © 2009-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1,919.313.5300 Fax: +1,919.869.2733 www.cree.com/rf


CGH09120F Rev 2.1

Typical Linear Performance

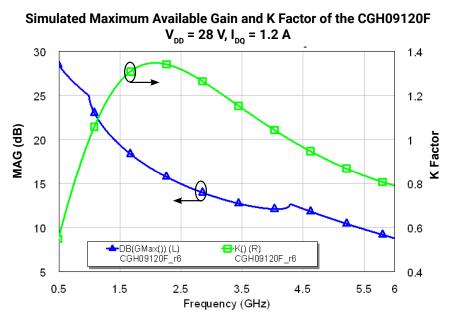
Typical WCDMA Performance



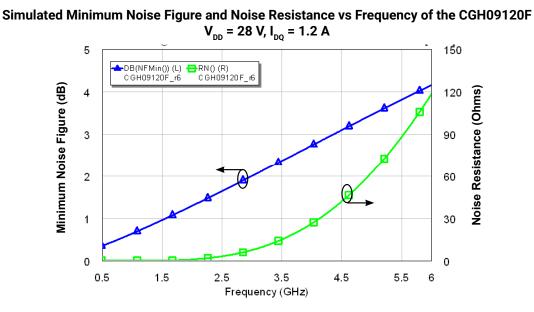
Copyright © 2009-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1,919.313.5300 Fax: +1,919.869.2733 www.cree.com/rf

Typical WCDMA Digital Pre-Distortion (DPD) Performance

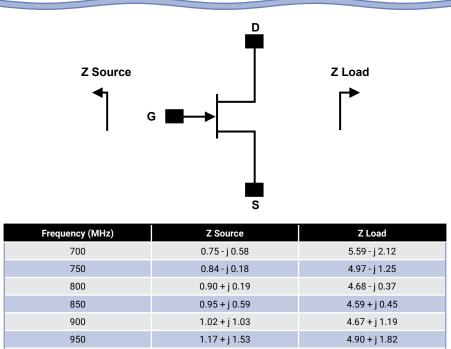

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Copyright © 2009-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.


CGH09120F Rev 2.1

Typical Performance

Typical Noise Performance

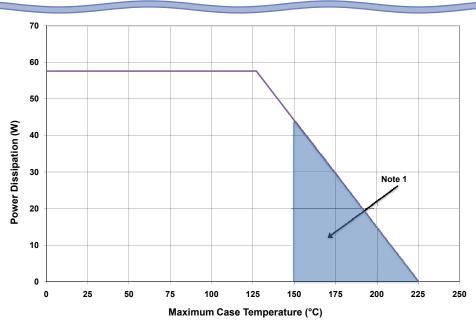

Electrostatic Discharge (ESD) Classifications

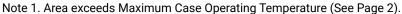
Parameter	Symbol	Class	Test Methodology
Human Body Model	НВМ	1A (> 250 V)	JEDEC JESD22 A114-D
Charge Device Model	CDM	II (200 < 500 V)	JEDEC JESD22 C101-C

Copyright © 2009-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Source and Load Impedances

Note¹ V_{DD} = 28V, I_{DO} = 1.2 A in the 440095 package.


1000

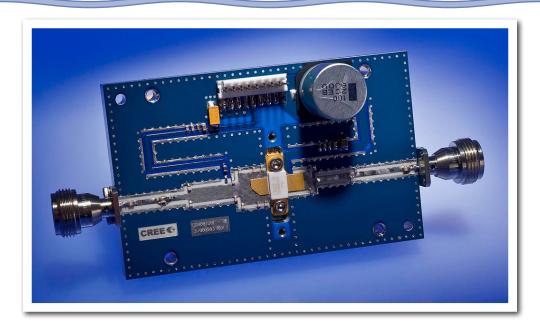

Note² Impedances are extracted from CGH09120F-AMP demonstration circuit and are not source and load pull data derived from transistor.

1.53 + j 2.10

5.28 + j 2.31

CGH09120F Power Dissipation De-rating Curve

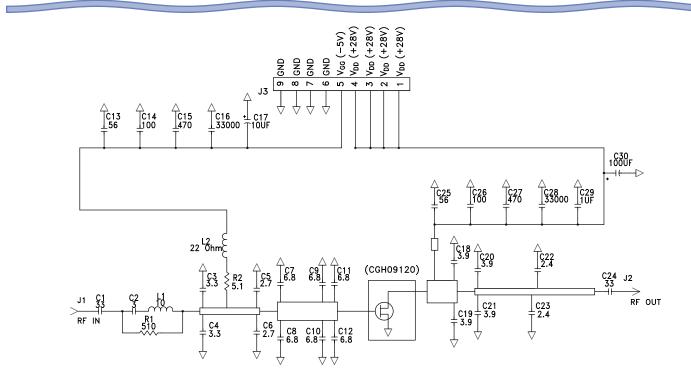
Copyright © 2009-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.


Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.8669.2733 www.cree.com/rf

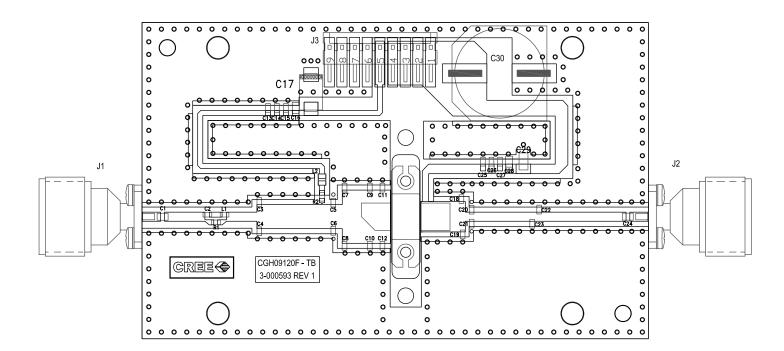
CGH09120F-AMP Demonstration Amplifier Circuit Bill of Materials

Designator	Description	Qty
R1	RES, 1/16W, 0603, 1%, 511 OHMS	1
R2	RES, 1/16W, 0603, 1%, 5.1 OHMS	1
C1, C24	CAP, 33 pF +/- 5%, 250V, 0805, ATC 600F	2
C2	CAP, 3.0 pF, +/- 0.1pF, 0603, ATC600S	1
C3, C4	CAP, 3.3 pF, +/- 0.1pF, 0603, ATC600S	2
C5, C6	CAP, 2.7 pF, +/- 0.1pF, 0603, ATC600S	2
C7, C8, C9, C10, C11, C12	CAP, 6.8pF, +/- 0.25 pF, 0603, ATC600S	6
C13, C25	CAP, 56 pF +/- 5%, 0603 , ATC600S	2
C14, C26	CAP, 100 pF, +/-5%, 0603, ATC600S	2
C15, C27	CAP, 470 pF, 5%, 100V, 0603, X7R	2
C16, C28	CAP, 33000 pF, 0805, 100V, X7R	2
C17	CAP, 10 uF, 16V, TANTALUM	1
C18, C19, C20, C21	CAP, 3.9 pF, +/- 0.1pF, 0603, ATC600S	4
C22, C23	CAP, 2.4PF, +/-0.1 pF, 0603, ATC600S	2
C29	CAP, 1.0 uF, +/-10%, 1210, 100V, X7R	1
C30	CAP 100 uF, 160V, ELECTROLYTIC	1
L1	INDUCTOR, CHIP, 10nH, 0603, SMT	1
L2	FERRITE, 22 OHM, 0805, BLM21PG220SN1	1
J1, J2	CONN, N-Type, Female, 0.500 SMA Flange	2
J3	CONN, Header, RT> PLZ, 0.1 CEN, LK, 9 POS	1
-	PCB, RO4003, Er = 3.38, h = 32 mil	1
-	CGH09120F	1

CGH09120F-AMP Demonstration Amplifier Circuit



Copyright © 2009-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.


Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

CGH09120F-AMP Demonstration Amplifier Circuit Schematic

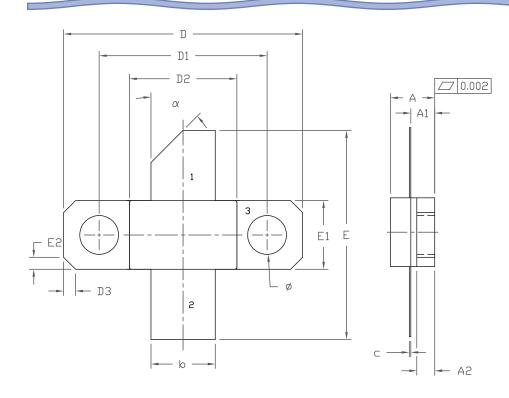
CGH09120F-AMP Demonstration Amplifier Circuit Outline

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1,919.313.5300 Fax: +1,919.869.2733 www.cree.com/rf

Copyright © 2009-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Typical Package S-Parameters for CGH09120F

(Small Signal, V_{DS} = 28 V, I_{DQ} = 1.2 A, angle in degrees)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.962	-177.69	4.16	80.41	0.006	15.01	0.812	-179.78
600 MHz	0.962	-178.94	3.46	77.69	0.006	17.16	0.814	179.92
700 MHz	0.962	-179.97	2.97	75.09	0.006	19.38	0.815	179.65
800 MHz	0.962	179.14	2.59	72.58	0.006	21.64	0.816	179.40
900 MHz	0.962	178.33	2.30	70.14	0.006	23.89	0.818	179.15
1.0 GHz	0.962	177.59	2.07	67.74	0.007	26.12	0.820	178.90
1.1 GHz	0.962	176.88	1.88	65.40	0.007	28.30	0.821	178.64
1.2 GHz	0.962	176.21	1.73	63.09	0.007	30.42	0.823	178.37
1.3 GHz	0.961	175.55	1.59	60.83	0.007	32.47	0.825	178.09
1.4 GHz	0.961	174.91	1.48	58.60	0.008	34.43	0.827	177.80
1.5 GHz	0.961	174.28	1.38	56.40	0.008	36.30	0.829	177.50
1.6 GHz	0.961	173.65	1.29	54.24	0.008	38.06	0.831	177.18
1.7 GHz	0.961	173.02	1.22	52.12	0.008	39.70	0.833	176.84
1.8 GHz	0.960	172.40	1.15	50.02	0.009	41.24	0.835	176.49
1.9 GHz	0.960	171.77	1.09	47.96	0.009	42.65	0.836	176.13
2.0 GHz	0.960	171.14	1.04	45.93	0.010	43.95	0.838	175.75
2.1 GHz	0.959	170.50	1.00	43.92	0.010	45.13	0.840	175.35
2.2 GHz	0.959	169.86	0.95	41.94	0.011	46.19	0.841	174.93
2.3 GHz	0.958	169.20	0.92	39.99	0.011	47.13	0.843	174.50
2.4 GHz	0.958	168.54	0.88	38.07	0.012	47.96	0.844	174.05
2.5 GHz	0.957	167.86	0.85	36.16	0.013	48.68	0.846	173.59
2.6 GHz	0.956	167.17	0.82	34.28	0.013	49.30	0.847	173.11
2.7 GHz	0.956	166.46	0.80	32.42	0.014	49.81	0.848	172.61
2.8 GHz	0.955	165.74	0.78	30.58	0.015	50.22	0.849	172.10
2.9 GHz	0.954	165.00	0.76	28.75	0.015	50.54	0.850	171.56
3.0 GHz	0.953	164.24	0.74	26.94	0.016	50.76	0.850	171.01
3.2 GHz	0.951	162.65	0.71	23.34	0.018	50.94	0.851	169.86
3.4 GHz	0.948	160.96	0.68	19.78	0.021	50.78	0.851	168.62
3.6 GHz	0.945	159.15	0.67	16.22	0.023	50.30	0.850	167.31
3.8 GHz	0.941	157.21	0.65	12.64	0.026	49.50	0.848	165.90
4.0 GHz	0.936	155.11	0.65	9.02	0.029	48.38	0.846	164.39
4.2 GHz	0.931	152.81	0.64	5.33	0.033	46.95	0.842	162.78
4.4 GHz	0.924	150.30	0.65	1.52	0.038	45.18	0.837	161.04
4.6 GHz	0.916	147.52	0.66	-2.44	0.043	43.05	0.831	159.17
4.8 GHz	0.907	144.44	0.67	-6.59	0.049	40.54	0.823	157.14
5.0 GHz	0.896	140.98	0.69	-11.01	0.056	37.59	0.813	154.94
5.2 GHz	0.882	137.08	0.72	-15.75	0.065	34.17	0.801	152.55
5.4 GHz	0.865	132.66	0.75	-20.88	0.075	30.19	0.786	149.94
5.6 GHz	0.844	127.59	0.79	-26.51	0.087	25.59	0.769	147.10
5.8 GHz	0.818	121.74	0.84	-32.73	0.102	20.26	0.749	143.99
6.0 GHz	0.787	114.95	0.90	-39.65	0.119	14.11	0.725	140.60

To download the s-parameters in s2p format, go to the CGH09120F Product Page and click on the documentation tab.

Copyright © 2009-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Product Dimensions CGH09120F (Package Type – 440095)

NDTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M - 1994.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

	INCHES		MILLIMETERS		NOTES
DIM	MIN	МАХ	MIN	МАХ	
A	0.145	0.165	3.68	4.19	
A1	0.077	0.087	1.96	2.21	
A2	0.055	0.065	1.40	1.65	
b	0.210	0.220	5.33	5.59	2x
с	0.004	0.006	0.10	0.15	
D	0.795	0.805	20.19	20.45	
D1	0.557	0.567	14.15	14.40	
D2	0.355	0.365	9.02	9.27	
D3	0.040) TYP	1.02 TYP		4x
E	0.670	0.730	17.02	18.54	
E1	0.225	0.235	5.72	5.97	
E2	0.040 TYP		1.02 TYP		4x
ø	0.130 TYP		3.30 TYP		2x
α	45' REF		45'	REF	

PIN 1. GATE

2. DRAIN

3. SOURCE

Copyright © 2009-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

11 CGH09120F Rev 2.1

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH09120F	GaN HEMT	Each	
CGH09120F-TB	Test board without GaN HEMT	Each	
CGH09120F-AMP	Test board with GaN HEMT installed	Each	

CREE ᆃ

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/RF

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639

> Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Copyright © 2009-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.