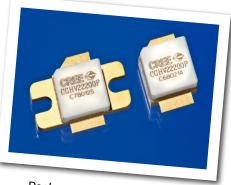
imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us


Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CGHV22200 200 W, 1800-2200 MHz, GaN HEMT for LTE

Cree's CGHV22200 is a gallium nitride (GaN) high electron mobility transistor (HEMT) is designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV22200F ideal for 1.8 - 2.2 GHz LTE, 4G Telecom and BWA amplifier applications. The transistor is input matched and supplied in a ceramic/ metal flange package.

Package Type: 440162 and 440161 PN: CGHV22200F and CGHV22200P

Typical Performance Over 1.8 - 2.2 GHz ($T_c = 25^{\circ}c$) of Demonstration Amplifier

Parameter	1.8 GHz	2.0 GHz	2.2 GHz	Units
Gain @ 47 dBm	16.6	19.2	18.1	dB
ACLR @ 47 dBm	-37.4	-37.4	-35.6	dBc
Drain Efficiency @ 47 dBm	31.5	31.9	34.8	%

Note:

Measured in the CGHV22200-AMP amplifier circuit, under WCDMA 3GPP test model 1, 64 DPCH, 45% clipping, PAR = 7.5 dB @ 0.01% Probability on CCDF. I_{ps} = 1.0 A

Features

- 1.8 2.2 GHz Operation
- 18 dB Gain
- -35 dBc ACLR at 50 W P_{AVE}
- 31-35 % Efficiency at 50 W P_{AVE}
- High Degree of DPD Correction Can be Applied

CREE ᆃ

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	125	Volts	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	Volts	25°C
Storage Temperature	T _{stg}	-65, +150	°C	
Operating Junction Temperature ³	Tj	225	°C	
Maximum Forward Gate Current	I _{gmax}	32	mA	25°C
Maximum Drain Current ¹	I _{dmax}	12	А	25°C
Soldering Temperature ²	Τ _s	245	°C	
Screw Torque	τ	80	in-oz	
Thermal Resistance, Junction to Case ³	R _{eJc}	1.22	°C/W	85°C, P _{DISS} = 96 W
Thermal Resistance, Junction to Case ⁴	$R_{_{ ext{ ext{ heta}JC}}}$	1.54	°C/W	85°C, P _{DISS} = 96 W
Case Operating Temperature ⁵	T _c	-40, +150	°C	

Note:

¹ Current limit for long term, reliable operation.

² Refer to the Application Note on soldering at <u>http://www.cree.com/rf/document-library</u>

³ Measured for the CGHV22200P

⁴ Measured for the CGHV22200F

⁵ See also, the Power Dissipation De-rating Curve on Page 6.

Electrical Characteristics ($T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	$V_{\rm GS(th)}$	-3.8	-3.0	-2.3	V _{DC}	$V_{_{DS}}$ = 10 V, I $_{_{D}}$ = 32 mA
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V _{DC}	$V_{\rm DS}$ = 50 V, I _D = 1.0 A
Saturated Drain Current ²	I _{DS}	24	28.8	-	А	$V_{\rm DS}$ = 6.0 V, $V_{\rm GS}$ = 2.0 V
Drain-Source Breakdown Voltage	V _{BR}	150	-	-	V _{DC}	$V_{_{ m GS}}$ = -8 V, I $_{_{ m D}}$ = 32 mA
RF Characteristics ³ ($T_c = 25^{\circ}C$, $F_0 = 2.17$ G	Hz unless otherv	vise noted)				
Saturated Output Power ^{3,4}	P _{SAT}	-	240	-	W	V _{DD} = 50 V, I _{DQ} = 1.0 A
Pulsed Drain Efficiency ³	η	-	65	-	%	$V_{_{DD}}$ = 50 V, I $_{_{DQ}}$ = 1.0 A, $P_{_{OUT}}$ = $P_{_{SAT}}$
Gain ⁶	G	-	18.0	-	dB	$V_{_{DD}}$ = 50 V, I $_{_{DQ}}$ = 1.0 A, $P_{_{OUT}}$ = 47 dBm
WCDMA Linearity ⁶	ACLR	-	-36.7	-	dBc	$V_{_{DD}}$ = 50 V, I $_{_{DQ}}$ = 1.0 A, $P_{_{OUT}}$ = 47 dBm
Drain Efficiency ⁶	η	-	34.5	-	%	$V_{_{DD}}$ = 50 V, $I_{_{DQ}}$ = 1.0 A, $P_{_{OUT}}$ = 47 dBm
Output Mismatch Stress ³	VSWR	-	-	10:1	Ψ	No damage at all phase angles, V $_{\rm DD}$ = 50 V, I $_{\rm DQ}$ = 1.0 A, P $_{\rm OUT}$ = 200 W Pulsed
Dynamic Characteristics						
Input Capacitance ⁷	C _{GS}	-	97	-	pF	$V_{_{DS}}$ = 50 V, $V_{_{gs}}$ = -8 V, f = 1 MHz
Output Capacitance ⁷	C _{DS}	-	13.4	-	pF	$V_{_{DS}}$ = 50 V, $V_{_{gs}}$ = -8 V, f = 1 MHz
Feedback Capacitance	C _{gd}	-	0.94	-	pF	$V_{_{DS}}$ = 50 V, $V_{_{gs}}$ = -8 V, f = 1 MHz

Notes:

2

¹ Measured on wafer prior to packaging.

² Scaled from PCM data.

 3 Pulse Width = 100 μS , Duty Cycle = 10%

⁴ P_{SAT} is defined as I_{g} = 3 mA peak.

⁵ Measured in CGHV22200-AMP

⁶ Single Carrier WCDMA, 3GPP Test Model 1, 64 DPCH, 45% Clipping, PAR = 7.5 dB @ 0.01% Probability on CCDF.

⁷ Includes package and internal matching components.

Copyright © 2012-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/ff

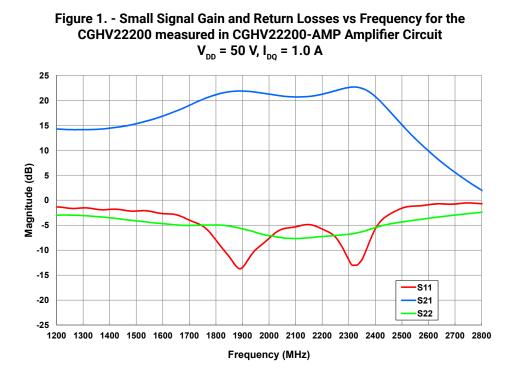
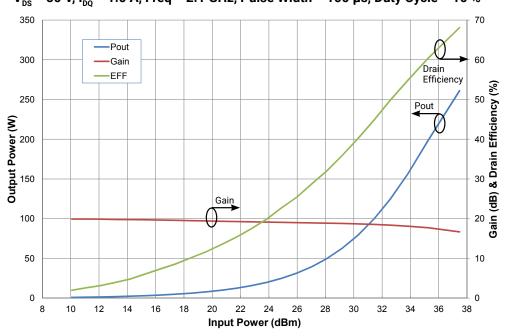



Figure 2. - Typical Gain and Drain Efficiency vs Input Power of the CGHV22200 measured in CGHV22200-AMP Amplifier Circuit. V_{ps} = 50 V, I_{po} = 1.0 A, Freq = 2.1 GHz, Pulse Width = 100 µs, Duty Cycle = 10 %

Copyright © 2012-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1,919.313.5300 Fax: +1,919.869.2733 www.cree.com/rf

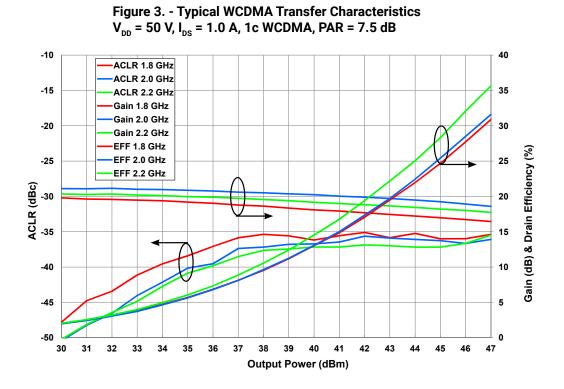
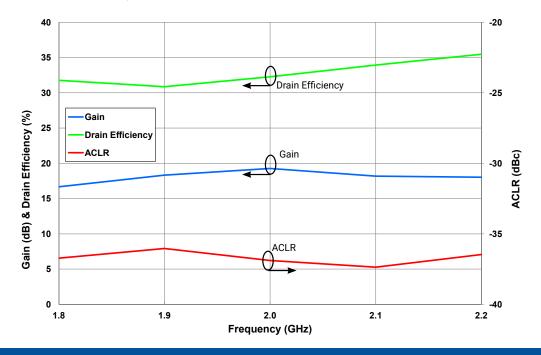
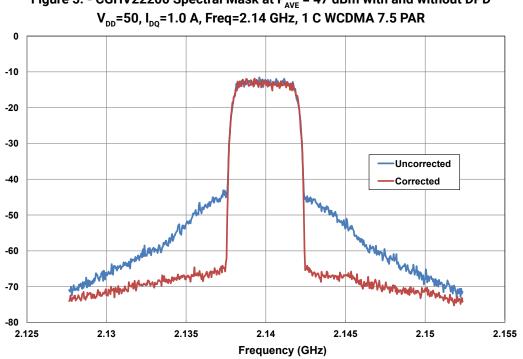
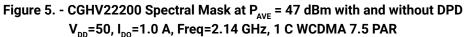
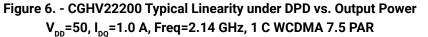
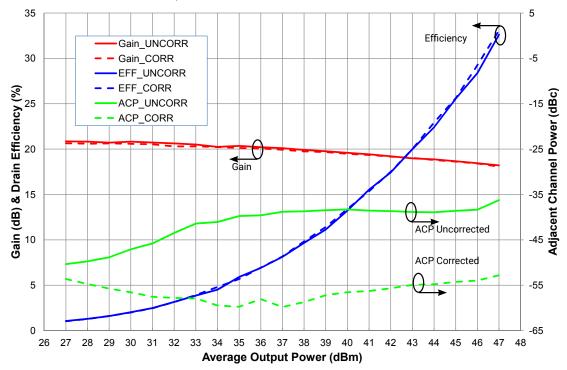



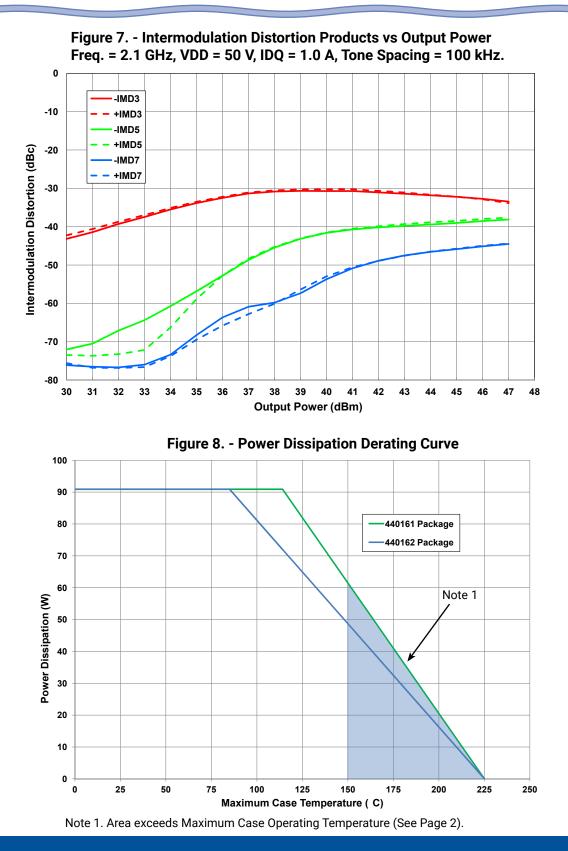
Figure 4. - Typical Gain, Drain Efficiency and ACLR vs Frequency of the CGHV22200 measured in CGHV22200-AMP Amplifier Circuit V_{DD} = 50 V, I_{DS} = 1.0 A, P_{AVE} = 50 W, 1c WCDMA, PAR = 7.5 dB




Copyright © 2012-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

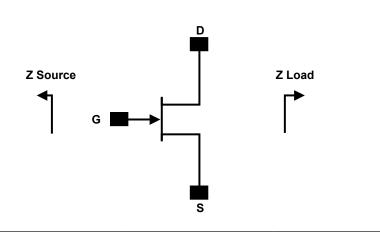

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1,919.313.5300 Fax: +1,919.869.2733 www.cree.com/rf


CGHV22200 Rev 2.0



Copyright © 2012-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf


Copyright © 2012-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

CGHV22200 Rev 2.0

Source and Load Impedances

Frequency (MHz)	Z Source	Z Load
1800	10.6 - j7.3	2.7 + j0.6
1900	8.1 - j7.4	2.8 + j0.7
2000	6.1 - j6.6	2.9 + j0.8
2100	4.7 - j5.5	2.8 + j0.8
2200	3.7 - j4.3	2.6 + j0.8

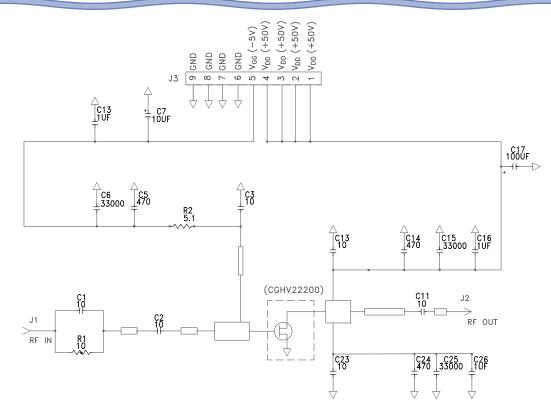
Note¹: V_{DD} = 50 V, I_{DQ} = 1.0 A. In the 440162 package. Note²: Impedances are extracted from CGHV22200-AMP demonstration

circuit and are not source and load pull data derived from transistor.

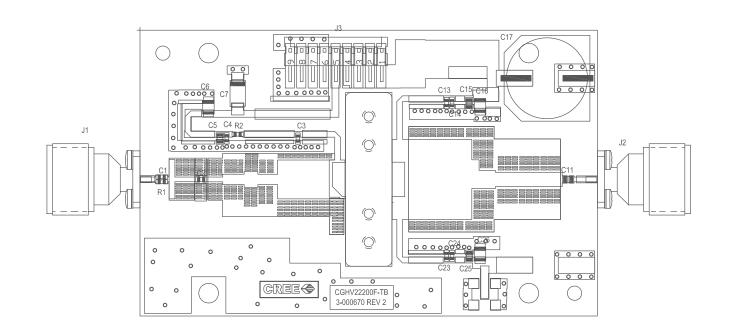
Copyright © 2012-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

CGHV22200-AMP Demonstration Amplifier Circuit Bill of Materials

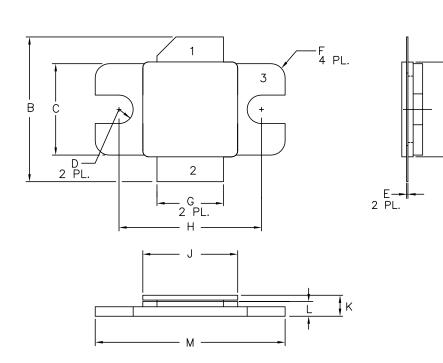

Designator	Description	Qty
R1	RES, 1/16 W, 0603, 1%, 10.0 OHMS	1
R2	RES, 1/16 W, 0603, 1%, 5.1 OHMS	1
C4, C14, C24	CAP, 470 pF, 5%, 100 V, 0603, X	3
C6,C16, C26	CAP, 1.0 UF, 100 V, 10%, x7R, 121	3
C17, C27	CAP, 100 UF, 20%, 160 V, ELEC	2
C7	CAP, 10 UF, 16 V, TANTALUM, 2312	1
C1, C2, C3, C13, C23	CAP, 10.0 pF, 5%, 0603, ATC	5
C5, C15, C25	CAP, 33000 pF, 0805, 100 V, X7R	3
C11	CAP, 10 pF, 5%, 250 V, 0805, A	1
J1, J2	CONN, N, FEM, W/.500 SMA FLNG	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
	PCB, CGHV22200F, RO4350,0.020" THK	1
	2-56 SOC HD SCREW 1/4 SS	4
	#2 SPLIT LOCKWASHER SS	4
	CGHV22200	1

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf


Copyright © 2012-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

CGHV22200-AMP Demonstration Amplifier Circuit Schematic

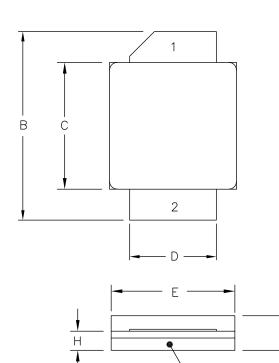
CGHV22200-AMP Demonstration Amplifier Circuit Outline

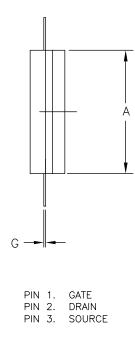

Copyright © 2012-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

CGHV22200 Rev 2.0

Product Dimensions CGHV22200F (Package Type – 440162)


NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

	INCHES		MILLIM	IETERS
DIM	MIN	MAX	MIN	МАХ
A	.395	.405	10.03	10.29
В	.580	.620	14.73	15.75
С	.380	.390	9.65	9.91
D	.055	.065	1.40	1.65
E	.004	.006	0.10	0.15
F	.055	.065	1.40	1.65
G	.275	.285	6.99	7.24
н	.595	.605	15.11	15.37
J	.395	.405	10.03	10.29
к	.129	.149	3.28	3.78
L	.053	.067	1.35	1.70
м	.795	.805	20.19	20.45

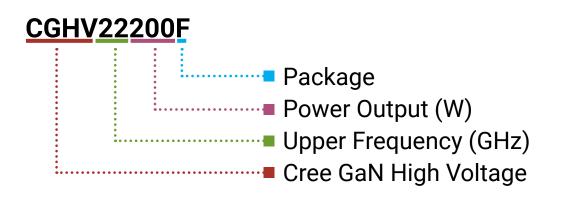
PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Product Dimensions CGHV22200P (Package Type - 440161)

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

	INCHES		MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
A	.395	.407	10.03	10.34
В	.594	.634	15.09	16.10
С	.395	.407	10.03	10.34
D	.275	.285	6.99	7.24
E	.395	.407	10.03	10.34
F	.129	.149	3.28	3.78
G	.004	.006	0.10	0.15
н	.057	.067	1.45	1.70


Copyright © 2012-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

F

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.8669.2733 www.cree.com/rf

Part Number System

Value	Units
2.2	GHz
200	W
Flange	-
	2.2 200

Table 1.

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Table 2.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/ff

Copyright © 2012-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Product Ordering Information

Order Number CGHV22200F	Description GaN HEMT	Unit of Measure Each	Image
CGHV22200P	GaN HEMT	Each	CREE CREE CCHU22200P CCHU22200P CCHU22200P
CGHV22200-TB	Test board without GaN HEMT	Each	
CGHV22200F-AMP	Test board with GaN HEMT installed	Each	

Copyright © 2012-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

12 CGHV22200 Rev 2.0

CREE 🔶

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/rf

Sarah Miller Marketing Cree, RF Components 1.919.407.5302

Ryan Baker Marketing & Sales Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639

> Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 USA Tel: +1.919.313.5300 Fax: +1.919.869.2733 www.cree.com/rf

Copyright © 2012-2015 Cree, Inc. All rights reserved. The information in this document is subject to change without notice. Cree and the Cree logo are registered trademarks of Cree, Inc.