

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

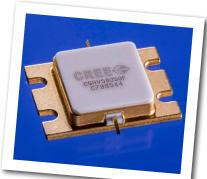
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China



CGHV59350

350 W, 5200 - 5900 MHz, 50-Ohm Input/Output Matched, GaN HEMT for C-Band Radar Systems

Cree's CGHV59350 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically with high efficiency, high gain and wide bandwidth capabilities, which makes the CGHV59350 ideal for 5.2 - 5.9 GHz C-Band radar amplifier applications. The transistor is supplied in a ceramic/metal flange package, type 440217 and 440218.

PN: CGHV59350 Package Type: 440217 and 440218

Typical Performance Over 5.2 - 5.9 GHz (T_c = 25°C) of Demonstration Amplifier

Parameter	5.2 GHz	5.55 GHz	5.9 GHz	Units
Output Power	468	475	468	W
Gain	10.7	10.8	10.7	dB
Drain Efficiency	68	62	59	%

Note:

Measured in the CGHV59350-AMP under 100 μ s pulse width, 10% duty cycle, P_{IN} = 46 dBm

Features

- 5.2 5.9 GHz Operation
- 470 W Typical Output Power
- 10.7 dB Power Gain
- 60% Typical Drain Efficiency
- 50 Ohm Internally Matched
- <0.3 dB Pulsed Amplitude Droop

Absolute Maximum Ratings (not simultaneous)

Parameter	Symbol	Rating	Units	Conditions
Pulse Width	PW	100	μs	
Duty Cycle	DC	10	%	
Drain-Source Voltage	V _{DSS}	125	Volts	25°C
Gate-to-Source Voltage	$V_{\sf GS}$	-10, +2	Volts	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	T _J	225	°C	
Maximum Forward Gate Current	I _{GMAX}	64	mA	25°C
Maximum Drain Current ¹	I _{DMAX}	24	Α	25°C
Soldering Temperature ²	T _s	245	°C	
Screw Torque	τ	40	in-oz	
Pulsed Thermal Resistance, Junction to Case	$R_{_{ heta JC}}$	0.31	°C/W	100 μ sec, 10%, 85°C , P _{DISS} = 320 W
Case Operating Temperature ³	T _c	-40, +125	°C	

Notes:

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics¹(T _c = 25°C)						
Gate Threshold Voltage	$V_{\rm GS(th)}$	-3.8	-3.0	-2.3	V _{DC}	V _{DS} = 10 V, I _D = 64 mA
Gate Quiescent Voltage	$V_{\rm GS(Q)}$	-	-2.7	-	V _{DC}	V _{DS} = 50 V, I _D = 1.0 A
Saturated Drain Current ²	I _{DS}	48	57.8	-	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$
Drain-Source Breakdown Voltage	$V_{_{\mathrm{BR}}}$	150	-	-	V _{DC}	$V_{GS} = -8 \text{ V, } I_{D} = 64 \text{ mA}$

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering at http://www.cree.com/rf/tools-and-support/document-library

³ Refer to Figure 5

¹ Measured on wafer prior to packaging.

² Scaled from PCM data.

Electrical Characteristics Continued...

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
RF Characteristics³ (T _c = 25°C, F ₀ = 5.2 - 5.9 GHz unless otherwise noted)						
Output Power at 5.2 GHz	P _{out1}	389	466	-	W	V _{DD} = 50 V, I _{DQ} = 1 A, P _{IN} = 46 dBm
Output Power at 5.4 GHz	P_{oUT2}	335	499	-	W	$V_{DD} = 50 \text{ V, } I_{DQ} = 1 \text{ A, } P_{IN} = 46 \text{ dBm}$
Output Power at 5.8 GHz	P _{out3}	302	446	-	W	V _{DD} = 50 V, I _{DQ} = 1 A, P _{IN} = 46 dBm
Output Power at 5.9 GHz	P _{out4}	302	468	-	W	$V_{DD} = 50 \text{ V, } I_{DQ} = 1 \text{ A, } P_{IN} = 46 \text{ dBm}$
Gain at 5.2 GHz	G _{P1}	-	10.7	-	dB	V _{DD} = 50 V, I _{DQ} = 1 A, P _{IN} = 46 dBm
Gain at 5.4 GHz	G_{P2}	-	11	-	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 1 \text{ A, } P_{IN} = 46 \text{ dBm}$
Gain at 5.8 GHz	G _{P3}	-	10.5	-	dB	V _{DD} = 50 V, I _{DQ} = 1 A, P _{IN} = 46 dBm
Gain at 5.9 GHz	G _{P4}	-	10.7	-	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 1 \text{ A, } P_{IN} = 46 \text{ dBm}$
Drain Efficiency at 5.2 GHz	D _{E1}	53	68	-	%	V _{DD} = 50 V, I _{DQ} = 1 A, P _{IN} = 46 dBm
Drain Efficiency at 5.4 GHz	D _{E2}	46	67	-	%	$V_{DD} = 50 \text{ V, } I_{DQ} = 1 \text{ A, } P_{IN} = 46 \text{ dBm}$
Drain Efficiency at 5.8 GHz	D _{E3}	40	58	-	%	V _{DD} = 50 V, I _{DQ} = 1 A, P _{IN} = 46 dBm
Drain Efficiency at 5.9 GHz	D_{E4}	40	59	-	%	$V_{DD} = 50 \text{ V, } I_{DQ} = 1 \text{ A, } P_{IN} = 46 \text{ dBm}$
Small Signal Gain	S21	11.50	15	-	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 1 \text{ A, } P_{IN} = -10 \text{ dBm}$
Input Return Loss	S11	-	-7	-3	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 1 \text{ A, } P_{IN} = -10 \text{ dBm}$
Output Return Loss	S22	-	-11	-3	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 1 \text{ A, } P_{IN} = -10 \text{ dBm}$
Amplitude Droop	D	-	-0.3	-	dB	$V_{DD} = 50 \text{ V, } I_{DQ} = 1 \text{ A, } P_{IN} = 46 \text{ dBm}$
Output Stress Match	VSWR	-	5:1	-	Ψ	No damage at all phase angles, $V_{DD} = 50 \text{ V, } I_{DQ} = 1 \text{ A, } P_{IN} = 46 \text{ dBm Pulsed}$

Notes:

³ Measured in CGHV59350-AMP. Pulse Width = 100 μS, Duty Cycle = 10%.

Typical Performance

Figure 1. - Small Signal S-Parameters CGHV59350 in Test Fixture

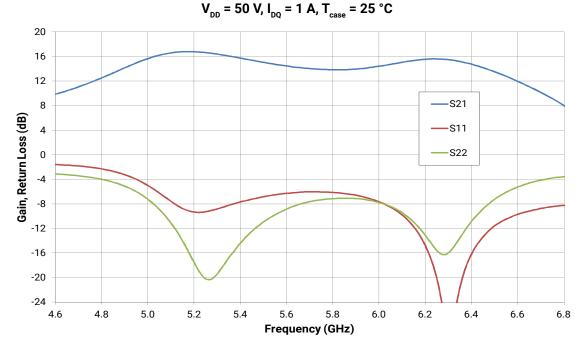
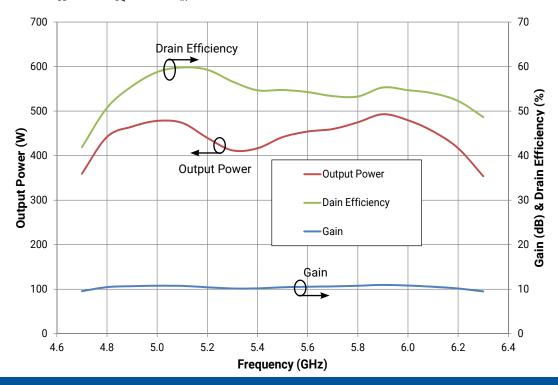
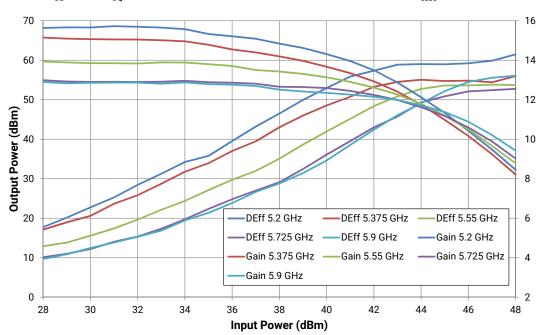



Figure 2. - CGHV59350 Pout, D_{Eff} , and Gain vs. Frequency at T_{case} = 25 °C V_{DD} = 50V, I_{DQ} =1.0 A, P_{IN} =46 dBm, Pulse Width = 100 μ S, Duty Cycle = 10%



Typical Performance

Figure 3. - CGHV59350 Output Power vs. Input Power V_{DD} = 50V, I_{DO} = 1.0 A, Pulse Width = 100 μ S, Duty Cycle = 10%, T_{case} = 25 °C 56 54 Pout 5.2 GHz Output Power (dBm) 52 Pout 5.375 GHz 50 Pout 5.55 GHz 48 -Pout 5.725 GHz Pout 5.9 GHz 46 44 42 40 32 38 48

Figure 4. - CGHV59350 Output Power vs. Input Power V_{DD} = 50V, I_{DO} = 1.0 A, Pulse Width = 100 μ S, Duty Cycle = 10%, T_{case} = 25 °C

Input Power (dBm)

Typical Performance

Figure 5. - CGHV59350 Output Power vs. Input Power V_{DD} = 50 V, I_{DO} = 1 A, Pulse Width = 100 μ S, Duty Cycle = 10 %, Tcase = 25 °C

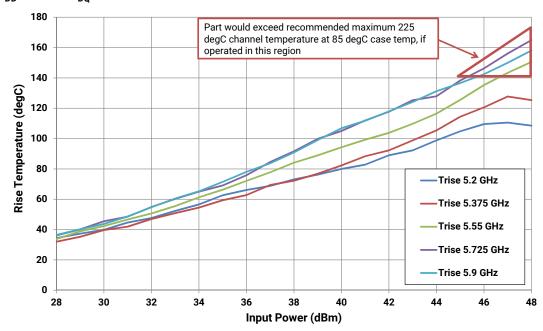
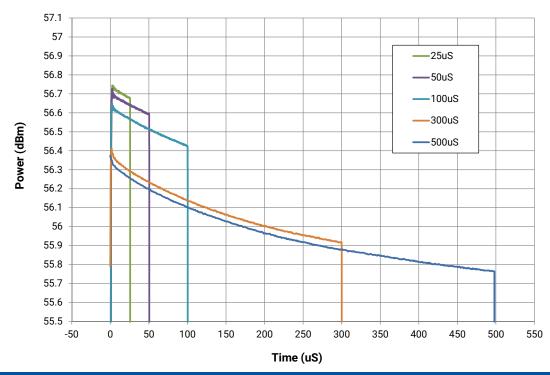
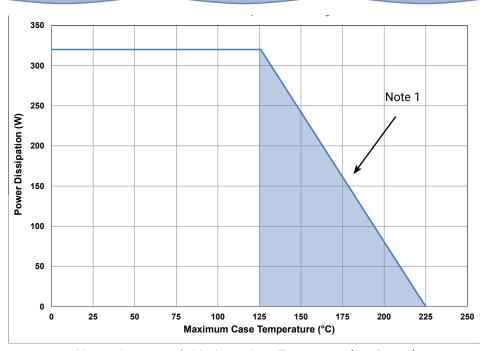
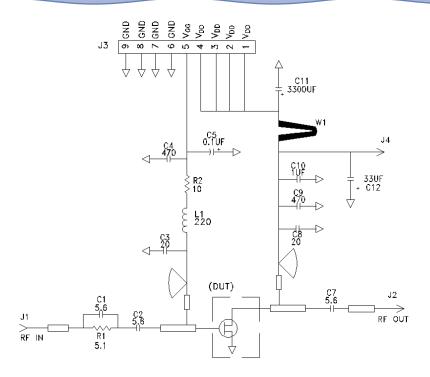



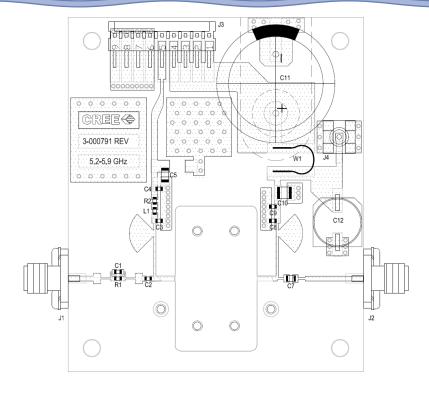
Figure 6. - CGHV59350 Output Power vs. Time V_{DD} = 50V, P_{IN} =46 dBm, Duty Cycle = 10%



CGHV59350-AMP Application Circuit Bill of Materials

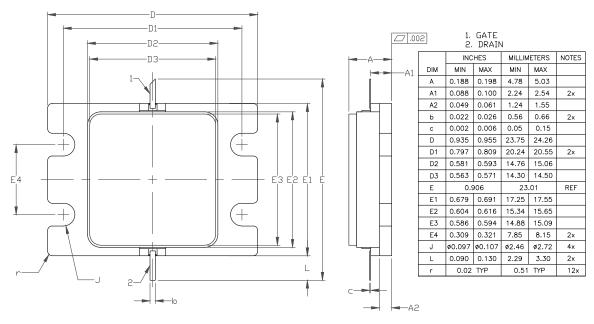
Designator	Description	Qty
R1	RES, 5.10HM, +/- 1%, 1/16W,0603	1
R2	RES, 100HM, +/- 1%, 1/16W,0603	1
C1,C2	CAP, 5.6pF, +/- 0.25 pF,250V, 0603	2
C3,C8	CAP, 20pF, +/- 0.25 pF,250V, 0603	2
C4,C9	CAP, 470PF, 5%, 100V, 0603, X	2
C5	CAP, 0.1MF, 1206, 250 V, X7R	1
L1	IND, FERRITE, 220 OHM, 0603	1
C10	CAP, 1.0UF, 100V, 10%, X7R, 1210	1
C7	CAP, 5.6pF, +/- 0.25 pF,250V, 0603	1
C11	CAP, 3300 UF, +/-20%, 100V, ELECTROLYTIC	1
C12	CAP, 33 UF, 20%, G CASE	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
J4	CONNECTOR; SMB, Straight, JACK,SMD	1
W1	CABLE ,18 AWG, 4.2	1
-	PCB, TEST FIXTURE, TACONIC RF35P 20MIL OVER 0.250 COPPER BACK, 2.5 X 3 X 0.26", CGHV59350-TB	1
-	2-56 SOC HD SCREW 1/4 SS	4
-	#2 SPLIT LOCKWASHER SS	4
Q1	CGHV59350	1


CGHV59350 Power Dissipation De-rating Curve


Note 1. Area exceeds Maximum Case Temperature (See Page 2).

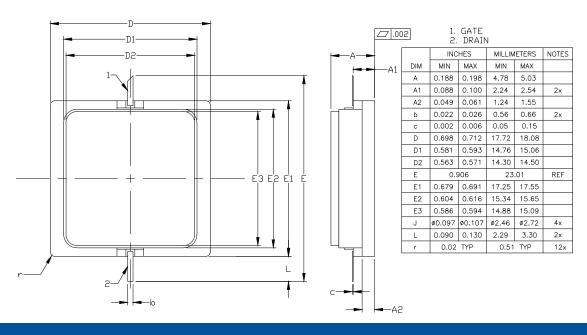
CGHV59350-AMP Application Circuit Schematic

CGHV59350-AMP Application Circuit Outline

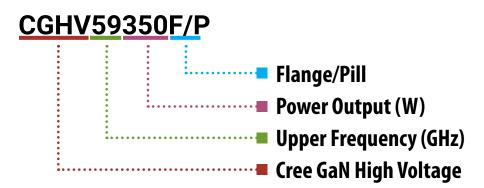


Product Dimensions CGHV59350F (Package Type — 440217)

NOTES: (UNLESS OTHERWISE SPECIFIED)


- 1. INTERPRET DRAWING IN ACCORDANCE WITH ANSI Y14.5M-2009
- 2. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF .020 BEYOND EDGE OF LID
- 3. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF .008 IN ANY DIRECTION
- 4. ALL PLATED SURFACES ARE GOLD OVER NICKEL

Product Dimensions CGHV59350P (Package Type - 440218)


NOTES: (UNLESS OTHERWISE SPECIFIED)

- 1. INTERPRET DRAWING IN ACCORDANCE WITH ANSI Y14.5M-2009
- 2. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF .020 BEYOND EDGE OF LID
- 3. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF .008 IN ANY DIRECTION
- 4. ALL PLATED SURFACES ARE GOLD OVER NICKEL

Part Number System

Parameter	Value	Units
Upper Frequency ¹	5.9	GHz
Power Output	350	W
Package	Flange/Pill	-

Table 1.

Note¹: Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Character Code	Code Value
А	0
В	1
С	2
D	3
Е	4
F	5
G	6
Н	7
J	8
K	9
Examples:	1A = 10.0 GHz 2H = 27.0 GHz

Table 2.

Product Ordering Information

Order Number	Description	Unit of Measure	lmage
CGHV59350F	GaN HEMT	Each	CREES OF CGHYS9350F
CGHV59350P	GaN HEMT	Each	CREESOP CELLS 1105
CGHV59350-TB	Test board without GaN HEMT	Each	
CGHV59350-AMP	Test board with GaN HEMT installed	Each	

Disclaimer

Specifications are subject to change without notice. Cree, Inc. believes the information contained within this data sheet to be accurate and reliable. However, no responsibility is assumed by Cree for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Cree. Cree makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. "Typical" parameters are the average values expected by Cree in large quantities and are provided for information purposes only. These values can and do vary in different applications and actual performance can vary over time. All operating parameters should be validated by customer's technical experts for each application. Cree products are not designed, intended or authorized for use as components in applications intended for surgical implant into the body or to support or sustain life, in applications in which the failure of the Cree product could result in personal injury or death or in applications for planning, construction, maintenance or direct operation of a nuclear facility.

For more information, please contact:

Cree, Inc. 4600 Silicon Drive Durham, North Carolina, USA 27703 www.cree.com/rf

Sarah Miller Marketing & Export Cree, RF Components 1.919.407.5302

Ryan Baker Marketing Cree, RF Components 1.919.407.7816

Tom Dekker Sales Director Cree, RF Components 1.919.407.5639